A NEW SPECIES OF THE GENUS PETALOMIUM (ACARI: HETEROSTIGMATINA: NEOPYGMEPHORIDAE) FROM WESTERN SIBERIA WITH REDESCRIPTION OF PETALOMIUM NATALIAE (SEVASTIANOV, 1967)

A.A. Khaustov

Tyumen State University, Tyumen, Russia; e-mail: alex1973khaustov@gmail.com

ABSTRACT: A new species of the genus Petalomium Cross, 1965 (Acari: Pygmephoroidea: Neopygmephoridae), E. kurosai sp. n. is described from ants (Hymenoptera: Formicidae) in Western Siberia, Russia. A closely related species, P. nataliae (Sevastianov, 1967) is recorded from Russia for the first time and redescribed.

KEY WORDS: Acari, Heterostigmata, systematics, phoresy, ants

INTRODUCTION

MATERIALS AND METHODS

Mites were collected from ants and mounted in Hoyer’s medium. The terminology of idiosoma and legs follows Lindquist (1986); the nomenclature of subcapitular setae and the designation of cheliceral setae follow Grandjean (1944, 1947), respectively. Systematics of Pygmephoroidea follows Khaustov (2004, 2008). All measurements are given in micrometers (μm). For leg chaetotaxy the number of solenidia is given in parentheses. The type material is deposited in the mite collection of the Tyumen State University Museum of Zoology, Tyumen, Russia.

SYSTEMATICS

Family Neopygmephoridae Cross, 1965

Genus Petalomium Cross, 1965

Type species: Parapygmephorus (Petalomium) krczali Cross, 1965, by original designation.

Petalomium kurosai Khaustov sp. n.

Figs 1–7

Description. Female (holotype, Figs 1–7). Length of idiosoma 310 (275–315), width 240 (225–245). Gnathosoma (Fig. 3). Gnathosomal capsule semioval, slightly shorter than width. Dorsally with 2 pairs of barbed, subequal setae (cha, chb). Dorso-laterally with 1 pair of subcapitular setae (m) and a pair of round pits situated posteromedial to bases of m. Palps freely articulated to gnathosomal capsule, with setae dFe and dGe dorsolaterally. Setae dGe slightly longer than dFe. Ventrally with large accessory setigenous structure (ass) and extremely small solenidium. Palps terminated with a small claw; palptarsus with a tiny peg-like setigenous structure. Pharyngeal pump I small, situated inside gnathosomal capsule; pharyngeal pumps II large, about 2 times longer than pharyngeal pump III.

Idiosomal dorsum (Fig. 1). Prodorsum almost completely covered by anterior margin of tergite C, with 2 pairs of setae (v₂, sc₂), 1 pair of clavate and weakly barbed trichobothria (sc₁) and 1 pair of round stigmata. All dorsal plates smooth. Setae v₂ smooth, other dorsal setae distinctly barbed; Setae h₂ densely covered by numerous and thin barbs (pubescent), other dorsal setae sparsely barbed.
Petalomium spp. (Acari: Pygmephoroidea: Neopygmephoridae) from Western Siberia

Setae c_1, c_2, and v_2 pointed, other dorsal setae blunt-ended. Posterior margin of tergite C distinctly concave; posterior margin of tergite H with tongue-like elongation medially. Cupules ia on tergite D and ih on tergite H small, round. Length of dorsal setae: v_2 6 (5–6), sc_2 24 (22–24), c_2 77 (77–82), c_1 97 (92–97), d 93 (90–93), e 61 (60–67), f 120 (115–120), h_1 110 (110–115), h_2 40 (40–43). Distances between setae: v_2–v_2 82 (76–82), sc_2–sc_2 120 (115–120), c_2–c_1 105 (98–105), c_1–c_2 52 (49–52), d–d 125 (120–125), e–f 39 (36–39), f–f 70 (68–70), h_1–h_1 47 (43–47), h_1–h_2 33 (29–33). Idiosomal venter (Fig. 2). All ventral plates smooth. All ventral setae barbed, except vestigial ps_2. Setae ps_1–ps_2 pubescent. Setae 1b bifurcate. Apodemes 1 (ap1) well developed and joined with prosternal apodeme (appr); apodemes 2 (ap2) weakly developed, thin, with median gap; prosternal and sejugal (apsej) apodemes well developed; appr usually with gap in central part; apodemes 3 indistinct. Apodemes 4 (ap4) well sclerotized and long, apodemes 5 absent. Posterior margin of posterior sternal plate straight in middle part. Posterior margin of aggenital plate weakly concave. Anterior genital sclerite (ags) bell-like, posterior genital sclerite (pgs) triangular, median genital sclerite (mgs) well developed, rounded. Length of ventral setae: 1a 65 (59–65), 1b 46 (44–46), 2a 59

Figs 1–2. Petalomium kurosai Khaustov sp. n., female: 1 — idiosomal dorsum, 2 — idiosomal venter.

Fig. 3. Petalomium kurosai Khaustov sp. n., female: — gnathosoma and pharyngeal pumps.
(57–61), 2b 54 (54–60), 3a 53 (53–54), 3b 58 (58–60), 3c 60 (57–63), 4a 55 (55–56), 4b 63 (63–69), 4c 65 (65–73, ps 1, 63 (59–63), ps 2, 60 (52–60), ps 3, 3 (2–3). Legs (Figs 4–7). Leg I (Fig. 4) distinctly shorter and thinner than leg II. Setal formula: 1–3–4–16(4). Tibiotarsus not thickened, with terminal claw situated on distinct pretarsus, tip of its claw thin. Length of solenidia ω_1 10 (8–10) $> \omega_2$ 8 (7–8) $= \varphi_1$ 7 (7–8) $> \varphi_2$ 6 (6); ω_2 and φ_2 baculiform, φ_1 clavate, ω_1 finger-shaped. Eupathidium tc' situated on small protuberance, tc'' on well-developed pinnaclum. Setae dFe broadened, slightly curved at the tip. Leg II (Fig. 5). Setal formula: 1–3–3–4(1–6). Tarsus with sickle-like, padded claws and large empodium. Solenidion ω 9 (7–9), finger-shaped, solenidion φ 4 (4–5) weakly clavate. Setae tc' thicker than other tarsal setae. Leg III (Fig. 6). Setal formula: 1–2–2–4(1)–6. Claws of same shape as on tarsus II. Solenidion φ 4 (4–5) weakly clavate. Leg IV (Fig. 7). Setal formula: 1–2–1–4(1)–6. Tarsus long and thin, pretarsus long, with two small simple claws and small empodium. Solenidion φ 4 (4–5), weakly clavate.

Male and **larva** unknown.
Petalomium spp. (Acari: Pygmephoroidea: Neopygmephoridae) from Western Siberia

Type material. Female holotype, slide NoVS300714, Russia: Tyumen Province, Tyumen region, vicinity of settlement Narimanovo, 57°21'56"N, 65°08'21"E, on ants Lasius niger (Linnaeus, 1758), 30 July 2014, coll. V.A. Stolbov. Paratypes: 7 females, same data as holotype; 1 female, Russia: Tyumen Province, vicinity of Tyumen, 57°09'55"N, 65°27'32"E, on ants Tetramorium caespitum (Linnaeus, 1758), 31 July 2014, coll. A.A. Khaustov.

Etymology. The new species is named for a well-known Japanese acarologist Kazuyoshi Kurosai for his great contribution to the heterostigmatic mite systematics.

Differential diagnosis. The new species is most similar to P. nataliae (Sevastianov, 1967) by the shape of the pharyngeal pumps, pubescent setae h, bifurcate setae l and subequal pubescent setae ps1–ps2 and vestigial ps3. It differs from P. nataliae by the distinctly longer setae f, which al-

Figs 6–7. Petalomium kurosai Khaustov sp. n., female: 6 — leg III, 7 — leg IV.
most 2 times longer than e (e and f are subequal in P. nataliae) and the vestigial palpal solenidion (well-developed in P. nataliae). The new species is also very similar to P. formicarum (Berlese, 1903), but differs by the distinctly shorter dorsal hysterosomal setae; by subequal setae d and c, (d distinctly longer than c, in P. formicarum); setae d are shorter than distance between their bases and not reaching beyond the posterior margin of the body (d is distinctly longer than distance between their bases and reaching far beyond the posterior margin of the body in P. formicarum).

Remarks. In a key to Japanese Tarsonemina, Kurosa (1980) illustrated dorsum of idiosoma of Petalomium ukrainicum (Sevastianov, 1967), which is currently considered as synonym of P. formicarum (Khaustov 2005; Mahunka 1980). Undoubtedly the Japanese specimen is clearly differs from P. formicarum by the distinctly shorter dorsal idiosomal setae and is probably conspecific with P. kurosai sp. n.

Petalomium nataliae (Sevastianov, 1967)
Figs 8–14

Pygmephorus nataliae Sevastianov, 1967, p. 357, fig. 6.

Petalomium nataliae, Kurosa 1980: 221.

Redescription. Female (Figs 8–14). Length of idiosoma 310–215, width 235–245. Gnathosoma (Fig. 10). Similar with that of P. kurosai sp. n., but dorsal median apodeme usually present. Palpal solenidion well-developed.

Idiosomal dorsum (Fig. 8). The shape of tergites, distribution and barbation of dorsal setae as in P. kurosai sp. n., but setae f distinctly shorter than h, and slightly longer or subequal to e. Length of dorsal setae: v2 5–6, sc2 22–27, c1 73–77, c2 85–92, d 65–70, e 63–74, f 70–83, h1 86–98, h2 39–44. Distances between setae: v2–v2 81–85, sc2–sc2 120–125, c1–c1 105–110, c1–c2 53–55, d–d 130–135, e–f 36–38, f–f 80–84, h1–h1 47–48, h1–h2 29–30. Idiosomal venter (Fig. 9). Similar with that of P. kurosai sp. n. Length of ventral setae: 1a 63–65, 1b 36–40, 2a 59–68, 2b 51–53, 3a 57–60, 3b 61–66, 3c 66–70, 4a 54–60, 4b 70–77, 4c 70–78, ps1 63–85, ps2 64–83, ps3 2–3. Legs (Figs 11–14) similar with those of P. kurosai sp. n. Leg I (Fig. 11). Length of solenidia ω, 9–11 > ω, 8–9 > φ, 7–8 > φ2 6–7. Leg II (Fig. 12). Solenidion ω 8–9, solenidion φ 4–5. Leg III (Fig. 13). Solenidion φ 4–5. Leg IV (Fig. 14). Solenidion φ 4–5.

Male and larva unknown.

Material examined. Female paratype, Belarus: Grodno province, settlement Karetichi, on Lasius niger, 16 August 1961, coll. E.V. Labvas;
Petalomium spp. (Acari: Pygmephoroidea: Neopygmephoridae) from Western Siberia

11 females, Russia: Tyumen Province, Kazansk region, vicinity of settlement Maliye Yarki, 55°37′07″N, 69°21′48″E, on ants Lasius niger, 03 August 2014, coll. V.A. Stolbov; 9 females, Russia: Tyumen Province, Tyumen region, vicinity of settlement Narimanovo, 57°21′56″N, 65°08′21″E, on ants Lasius niger, 30 July 2014, coll. V.A. Stolbov; 2 females, Russia: Tyumen Province, Tyumen region, vicinity of settlement Narimanovo, 57°21′56″N, 65°08′21″E, from the nest of Lasius niger, 30 July 2014, coll. V.A. Stolbov; 4 females, Russia: Tyumen Province, vicinity of Tyumen, 57°04′03″N, 65°04′12″E, on ants Tetramorium caespitum, 17 August 2014, coll. A.A. Khaustov; 6 females, Russia: Tyumen Province, vicinity of Tyumen, 57°04′03″N, 65°04′12″E, on ants Lasius niger, 17 August 2014, coll. V.M. Salavatulin.

Remarks. This species was described from Belarus and Ukraine where it was collected from ants Lasius niger (Sevastianov 1967). It was also recorded from Japan (Kurosa 1980), Hungary (Mahunka 1986) and Switzerland (Mahunka 1977) also from Lasius niger. This is the first record from Russia.

The original description of *P. nataliae* of Sevastianov (1967) and figure of idiosomal dorsum of Kurosa (1980) are incomplete, thus I made a redescriptions of this species. The present redescriptions of *P. nataliae* is based mainly on material from Western Siberia. The only female paratype available for this study is in bad condition, yet sufficient to prove its identity with the material from Western Siberia.

DISCUSSION

The newly described species, together with *P. nataliae* and *P. formicarum*, form a group of species characterized by the following combination of character states in females: the gnathosomal capsule is shorter than its width, dorsally with long, barbed subequal setae; pharyngeal pump II about 1.5–2 times longer than pharyngeal pump III; the prodorsum is almost completely covered by the anterior margin of tergite C; setae h1 are pubescent; setae 1b are bifurcate; setae ps1–ps2 are subequal and pubescent, ps are vestigial; posterior-genital sclerite is triangular; legs I are distinctly shorter and thinner than legs II; solenidia ω1 and ω2 are subequal; the pinnaculum at the base of eupathidion tc” is long; pretarsus IV is long and thin. Members of this group are currently known from the Palaearctic only. Females of *P. formicarum* are phoretic mainly on relatively large ants of the genus *Formica*, while *P. nataliae* and *P. kurosai* are phoretic on small soil-nesting ants of the genera *Lasius* and *Tetramorium*. I also observed phoresy of *P. nataliae* and *P. kurosai* on ants collected from the same nest. Such coexistence of two closely related species in the nest of the same host ant is well known in other groups of Pygmephoroidea. For example microdipid mites *Unguidispus lasii* Kurosa, 1979 and *U. japonicus* Kurosa, 1979 are often collected from the same nest of ants Lasius niger (Kurosa 1979). I also observed phoresy of several closely related species of mites of the genus *Imparipes* Berlese, 1903 (Scutacaridae) on ants *Tetramorium caespitum* (Khaustov 2008).

ACKNOWLEDGEMENTS

The author thanks Dr. A.V. Tolstikov (Tyumen State University, Russia) for valuable comments on the manuscript, Dr. V.A. Stolbov, S.A. Ivanov and V.M. Salavatulin (Tyumen State University, Russia) for their help with collecting mites. This research was supported by the Ministry of Education and Science of the Russian Federation, cooperative agreement No. 6.1933.2014/K.

Fig. 10. *Petalomium nataliae* (Sevastianov, 1967), female: — gnathosoma and pharyngeal pumps.
REFERENCES

Lindquist, E.E. 1986. The world genera of Tarsonemidiae (Acari: Heterostigmata): a morphological,
Petalomium spp. (Acari: Pygmephoridea: Neopygmephoridae) from Western Siberia

Sevastianov, V.D. 1967. [Mites of the genus *Pygmeophorus* (Pyemotidae, Trombidiformes) of the