THUIDIUM THERMOPHILUM (THUIDIACEAE, BRYOPHYTA),

 A NEW SPECIES FROM KAMCHATKA THUIDIUM THERMOPHILUM (THUIDIACEAE, BRYOPHYTA), НОВЫЙ ВИД С КАМЧАТКИI. V. Czernyadjeva ${ }^{1}$, V. Ya. Cherdantseva ${ }^{2}$, M. S. Ignatov 3 \& I. A. Milyutina ${ }^{4}$ И. В. ЧЕРНЯДЬЕВА ${ }^{1}$, В. Я. ЧЕРДАНЦЕВА ${ }^{2}$, М. С. ИГНАТОВ ${ }^{3}$, И. А. МИЛЮТИНА ${ }^{4}$

Abstract

Abstract

A new species, Thuidium thermophilum Czernyadjeva, is described from thermal fields of the Kamchatka Peninsula (Russian Far East). Its diagnostic characters, description, illustrations, and differentiation from the other species of Thuidiaceae are provided. Thuidium thermophilum differs from all other Thuidium species in unipinnate branching, which suggests a closer relationship to Rauiella, but DNA analysis (nrITS and trnL-F) suggest closer relation to Thuidium.

Резюме
С полуострова Камчатка описан новый вид Thuidium thermophilum Czernyadjeva. Вид растет на термальных полях. Приводятся описание и рисунки вида, обсуждаются его отличия от других видов семейства. Thuidium thermophilum, в отличие от всех прочих видов рода Thuidium, имеет одиножды перистое ветвление, что ставит его ближе к роду Rauiella, однако анализ последовательностей ДНК (ядерной ITS и хлоропластной $\operatorname{trnL} \mathrm{L}$) показывает более близкое родство непосредственно с родом Thuidium.

In the course of identification of specimens collected by Olga Chernyagina from central Kamchatka, Verkhnie Kireunskie thermal springs (Sredinny Range, Alnej Mountain), a species of Thuidiaceae was encountered that was impossible to identify according to both East Asian (Watanabe, 1972; Noguchi, 1991, Touw, 2001) and North American (Lawton, 1971) treatments. Plants were found in only one valley, but in six places, always near thermal springs. Later, in 2006 the same species was collected again by Chernyagina, in Rusakovskie thermal springs in northern Kamchatka, ca. 210 km from the former locality. The latter collection gave us confidence that the unusual combination of characters is not simply
an environmentally induced mutation of one of a widespread Thuidium species. Therefore the new species is described here.

Thuidium thermophilum Czernyadjeva, species nova. Fig. 1.

Caulis prostratis, elongatis, simpliciler pinnato, 5 cm longis; paraphyllia numerosa; folia imbricata, humida erecti-patentia, valde concava, 0.6-0.8 mm longa, $0.4-0.5 \mathrm{~mm}$ lata, breviter acuminata, ovato-cordata, nervo ad medium evanida, cellulae medianae rotundae-rhomboideae, (6-)8-12(17) $\mu \mathrm{m}$, multipapillosae. A Thuidium glaucinum cauli unipinati differt.

Typus. Russia, Kamchatka, $56^{\circ} 45^{\prime} \mathrm{N}, 160^{\circ} 00^{\prime} \mathrm{E}$, Jugum Sredinny, Montis Alnei, ripa Kirevna, Verkh-

[^0]

Fig. 1. Thuidium thermophilum Czernyadjeva (from holotype): 1 - unipinnate stem with sympodial shoot; 2-4 branch leaves; 5-8-stem leaves; 9-10 - upper leaf cells; 11 - leaf transverse section; 12 - mid-leaf cells; 13-14-habit; 15-18 - paraphyllia. Scale bars: 1 cm - for $1 ; 5 \mathrm{~mm}$ - for $13 ; 1 \mathrm{~mm}$ - for $14 ; 0.5 \mathrm{~mm}$ - for 2-8; $100 \mu \mathrm{~m}-9-12,15-18$.
nie Kireunskie fontes thermales, ad terra humida. Leg. 8.Aug.1991, O.A. Chernyagina (holotypus LE, isotypi MHA, VLA). Paratypus: Kamchatka, $58^{\circ} 30^{\prime} \mathrm{N}, 161^{\circ} 15^{\prime} \mathrm{E}$, Jugum Sredinny, ad ripe Rusakova, Rusakovskie fontes thermales. Leg. 28.VIII.2006, O.A. Chernyagina \& V. Kirichenko (VLA, MHA).

Plants yellowish to brownish green, in loose tufts. Stems to 5 cm long, unipinnate, not regularly branching, sometimes with $1-2(-3)$ secondary branches on a few primary branches; primary branches $2-5 \mathrm{~mm}$ long, more rarely to 7 mm long, secondary branches $1-2 \mathrm{~mm}$ long; with central strand; paraphyllia numerous on stem, not or slightly branched, mostly uniseriate, more rarely bi- to pluriseriate and rarely to ovate-lanceolate (when proximal to branch primordia), few on branches, especially near the bases of secondary branches; cells of paraphyllia papillose on both sides above the cell centre, upper cell of paraphyllia multipapillose. Stem leaves loosely arranged or at places more densely arranged, loosely appressed to erect when dry, erect-spreading when wet, slightly keeled to concave, triangular-ovate, \pm shortly acuminate, $0.6-0.8 \mathrm{~mm}$ long, $0.4-0.5$ mm broad; margins serrulate, plane; costa single, $25-30 \mu \mathrm{~m}$ wide at leaf base, $1 / 3-3 / 4$ the leaflength; median laminal cells rounded-quadrate, ovate to rectangular or rhomboidal, (6-)8-12(17) $\mu \mathrm{m}$, with ($1-$)2-3 stellate papillae at back, smooth on the upper surface, cell walls $\sim 2 \mu \mathrm{~m}$ thick, \pm uniform, rarely \pm collenchymatous, practically without pores; apical cells with papillae; branch leaves crowded, imbricate, ovate to broadly ovate or triangular-ovate, $0.4-0.5 \mathrm{~mm}$ long, $0.25-$ 0.35 mm broad, cells with (1-)2-3 papillae, apical cell with 2-3 papillae. Fig. 1.

Type: Russia, Far East, Kamchatka Peninsula, $56^{\circ} 45^{\prime} \mathrm{N}, 160^{\circ} 00^{\prime} \mathrm{E}$, alt. 500 m . Sredinny Range, Alnej volcano, valley of Kirevna River, Verhnekireunsky hot springs, thermal field, grassmosses association, 8.VIII.1991, Chernyagina, \#9 (holotype LE, isotype MHA). Paratype: Kamchatka Peninsula, Koryaksij Autonomous District, Karaginsky District, $58^{\circ} 30^{\prime} \mathrm{N}, 161^{\circ} 15^{\prime} \mathrm{E}$, Rusakova (Sanovayam) River, Rusakovskie hot springs, 28.VIII.2006, Chernyagina \& Kirichenko s.n. (VLA, MHA).

Other studied specimens (all collections of O .

A .Chernyagina in LE): same locality as the type: (1) thermal field, Agrostis scabra -mosses association, 5.VIII.1991, Chernyagina, \#1; (2) thermal field, Agrostis scabra -mosses association, 11.VIII.1991, Chernyagina, \#5; (3) thermal field, Fimbristilis ochothensis-mosses association, 8.VIII.1991, Chernyagina, \#6; (4) fern-dominated Alnus stand, 2.VIII.1991, Chernyagina, \#2, \#8; (5) bank of cold stream in thermal field, 26.VIII. 2001, Chernyagina, \#1.

The main diagnostic character of the new species is the combination of unipinnate, moderately regularly branching of the stem, 2-3 stellate papillae over the cell lumina and \pm shortly acuminate stem leaves.

This combination suggests two possible close relatives of the new species. On one hand, Thuidium thermophilum could be close to species of Rauiella: the American Rauiella scita (P. Beauv.) Reimers and the Japanese R. fujisana (Paris) Reimers are similar to T. thermophilum in having unipinnate branching and stellate papillae. Stem leaves of R. fujisana are acuminate with non-papillose uppermost cells, but the apical part of branch leaves is very similar to that found in stem (and branch) leaves of the new species. On the other hand, leaf shape and stellate papillae in our new species are very similar to the East Asian Thuidium glaucinum (Mitt.) Bosch \& Lac. and T. subglaucinum Cardot, but these species are regularly bipinnate.

The latter character is an important one for generic circumscription in the family. Although some authors still keep unipinnate Abietinella and Pelekium in Thuidium, the most recent worldwide revision segregated Thuidium as a genus with bior tripinnate branching (Buck \& Crum, 1990; Touw, 2001).

Facing the difficulty with the generic placement of the new species, we undertook a comparison of the nuclear ITS and chloroplastic trnL-F sequences to resolve this dilemma.

Materials and Methods

Protocols of DNA extraction and sequencing were the same as described in Budyakova \& al. (2003).

Phylogenetic analysis was undertaken for ITS data only, as $t r n \mathrm{~L}-\mathrm{F}$ data were available for few
$\stackrel{\wedge}{\infty}$
 CGATG CGTCCACCTT cGatg cGTCCACCTT
 CTATG CACTCACCTT CGATG TGCCCACCTT cgatg cgtccacctt cgatg cgrccacctt cGatg cgTccacc－ cGatG cGTCCACC－ CGATG CATCCACC－－ CGATG CGTCCACC－
CGATG CGTCCACC－ cgatg cgtccacc－ cGatG cGTCCACC－ cGatG cGTCCACC－ CGATG TGTCCACC－ CGATG CATCCACC－

 S §

 $\underset{H}{5}$ ESE
 167

$\begin{aligned} & 5 \\ & \\ & \times 8 \\ & \times 8 \\ &+ 0\end{aligned}$ $\begin{array}{ll}1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 5 & 0 \\ 5 & 0\end{array}$ GCTCGCG 0
0
0
0
0
0 E
E
E

F －GCTCGTT－ \begin{tabular}{l}
1

8

0

0

5

5

\hline

1 \& 4

0 \& 5

\cup \& 0

\hdashline \& 5

0 \& 0

1 \& 1
\end{tabular}

苞人 4
0
0
5
0
8
0
0
0

 GCGAGCCC－ $\begin{array}{ll}1 \\ \vdots \\ 0 & 0 \\ 0 & 4 \\ 0 & - \\ 0 \\ 0 & 1 \\ 0 & 8 \\ 0 & 8\end{array}$ 48 8 | 8 |
| :--- |
| 0 |
| \vdots |
| \vdots |
| 0 |
| 0 |
| 8 | GC $\stackrel{N}{n}$

 TCGTCGT TCGTCGT TCGTCGT TCGTCGT TCGTCGT TCGTCGT TCGTCGT TCGTCA

844

 tacctcGig \begin{tabular}{l}
0

U

\vdots

\vdots

\vdots

\hline

0

E

U

E

U

5

\hline
\end{tabular}

 $\begin{array}{ll}0 & 0 \\ E & 0 \\ 5 & 0 \\ y & 6 \\ 0 & 0 \\ - & H\end{array}$ tGCCTCATG

 tacctcaCG

tacctcaCG | U |
| :--- |
| S |
| \vdots |
| U |
| \vdots |
| \leftarrow |

 tacctcatg common for
 FFUFGトFFFFFFFFFFFFFFF
$七 6 \angle \quad$ 七8L E
5
4
0

0 | $E E$ |
| :--- |
| $E E$ |
| $甘$ |
| \forall |
| - | ＇

5
5
0
0
0 E
5
5
8
8
0 GGAATT－ 1
5
8
0
0
0 $\begin{array}{r}1 \\ \hline \\ \hline\end{array}$ E
0
0
0
0
U
8
8
0
8
8
 0
0
0
0
0
0
0
0 E
0
0
0
0
0
0
0
8
0
0 －－GGAGTCG GGAGTT E
$\$$
0
0
U
U
U
U
0

0 | E |
| :--- |
| 0 |
| 8 |
| 0 |
| 0 |
| 0 | U

0
0
0
0
0

0 | 5 |
| :--- |
| |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 | U

0
0
0
0
0
0
0 0
0
0
0
0
8
0
0 gGagccc ggagcce gGagCCC ，

.
n
ค $\stackrel{n}{n}$ tagGitgata ganatatang caltcctgag ccanatctia titcgitrga taggtrgata ganatatang caatcctgag ccanatctta titcgittga taggitgata ganatataag caatcctgag ccanatctra titcgittga taggitgata anantatalag cantcctgag ccanatctra titcgittga taggtrgata ganatataag catccttgag ccanatctra ttrcgittga tagGitgata anaatatang caatcctgag ccanatctia titcgittga
195
--- TITTTAG
--- TITTIAG

- -TITTAG - - -tाITTAG
 - $A G$
295

 \begin{tabular}{l}
0

\hline 8

8

8

8

8

0

0

0

0

0

\hline
\end{tabular}

 0
0
8
8
8
8
8
8 taAtcTTAGC AACAATITAA ATTGTAGTAG anaganahtc cGTTGGCTIT ATTGACCGTG

$$
\begin{aligned}
& \text { AAGCCGATCG }_{375}^{385} \begin{array}{r}
395 \\
\hline \text { AAGGCCGG AATAGC }
\end{array} \\
& \begin{array}{ll}
8 & 8 \\
8 \\
8 \\
8 \\
8 \\
8 & 8 \\
8 \\
8 \\
8 \\
8 \\
8 \\
8 \\
8 \\
8 \\
8 \\
8 \\
8 \\
8 \\
8 \\
8
\end{array} \\
& \begin{array}{l}
8 \\
8 \\
8 \\
8 \\
8 \\
8 \\
8 \\
8 \\
8 \\
\$ \\
8 \\
8 \\
0 \\
8 \\
8 \\
8 \\
8 \\
8 \\
8
\end{array} \\
& \begin{array}{l}
8 \\
8 \\
8 \\
8 \\
8 \\
8 \\
8 \\
8 \\
8 \\
8 \\
8 \\
8 \\
6 \\
8 \\
8 \\
8 \\
8 \\
8 \\
8
\end{array} \\
& \begin{array}{l}
8 \\
8 \\
8 \\
8 \\
8 \\
8 \\
8 \\
8 \\
8 \\
8 \\
8 \\
8 \\
8 \\
8 \\
8 \\
8 \\
8 \\
8 \\
8 \\
8
\end{array} \\
& \begin{array}{l}
8 \\
8 \\
8 \\
8 \\
8 \\
8 \\
8 \\
8 \\
8 \\
8 \\
8 \\
8 \\
8 \\
8
\end{array}
\end{aligned}
$$

325

45 caggganact caggganact caggganact caggganact caggganact 145 cgantaatat 5
8
8
8
8
8
8
8
8 8
8
8
8
8多
$\$$
8
8
8
8 cgatatatat 245
255

$\stackrel{155}{165}{ }_{\text {TITATAAAAT TATITTAAAA }}^{165}$TTTATAAAAT多 \&
8
E
 TIT- TAAAAT $\begin{array}{ll}E & E \\ O & \\ 0 & 0 \\ E & 0 \\ 0 & 0\end{array}$
 E
8
8
5
0
0
8
8
8
8
8 TATTITAAAA $\$$
E
$\$$ TTT-TAAAAT TATTT-AAAA TTTATTITT AGATATATTT TATTT- AAAA TATTT- AAAA
265 8
8
8
8
8
175 AGATAT TATTT- AAAA TTTCTTTTTT AGATAT---T agatat---
285

 8
8
8
8
8
8 taAtattagc
tatattagATATTAAGCG AGGATAAAGA TAGAGTCCAA TTTTACATGT
Thui di um del i cat ul um Thui di umtamarisci num Thui di um ther nophi I um Raui ella fujusana
Abi eti nella abietina Leskea pol ycarpa Pseudol eskeel la catenul at a Thui di um del i catul um Thui di umtanarisci num Thui di um ther nophi I um Raui ella fujusana Abi eti nella abietina Leskea pol ycarpa Pseudol eskeel I a catenul at a Thui di um deli cat ul um
Thui di umtanarisci num
Thui di um ther mophi lum
Raui el la fuj usana
Abi eti nel la abi eti na
Leskea pol ycarpa
Pseudol eskeel la catenul at a Thui di um del i catulum Thui di umtanarisci num Thui di um ther nophi I um Raui el la fujusana Abi et i nel l a abi et i na Leskea pol ycarpa
Pseudol eskeel la catenul at a
Fig. 3. Alignment of trnL-F region. Positio to Thuidium than to Rauiella are boldfaced.

Thuidium species. However trnL-F data are shown in the alignment of a small set of seven species (Thuidium thermophilum plus two Thuidium, Rauiella fujisana, and two species of the Leskeaceae and Pseudoleskeellaceae).

For ITS, the set was built for 30 taxa of Thuidiaceae and Lesceaceae in traditional circumscription. Voucher information is in Table 1. Part of this alignment showing characteristic indels (Fig. 2) comprise a somewhat reduced set of the whole alignment of 30 species used for the Nona analysis.

Parsimony analysis was done with Nona (Goloboff, 1994) within the Winclada (Nixon, 1999a) shell. A multi-ratchet option with five sequential parsimony ratchet runs was used (Nixon, 1999b). Each replicate included 200 iterations and 10 trees were held in memory during the iterations. During ratcheting 25% of the characters were resampled. Jackknifing with 2000 replications including 10 searches and 20 starting trees in each replication was performed with Nona within the Winclada shell.

Results
Results of the simple comparison of substitutions of nuclear loci (Fig. 2) and chloroplastic ones (Fig. 3), as well as parsimony analysis (Fig. 4) obviously support a much closer relationship of the new species to Thuidium, than to Rauiella, although within Thuidium its position was found the most basal in the Thuidium-clade (Fig. 4). At the same time the position within Thuidium-clade received 100% jackknife support.

DISCUSSION

The present analysis was not specifically focused on which group of Thuidium the new species belongs. We mostly took the data available from GenBank and from our previous analysis of Leskeaceae in its traditional circumscription (Gardiner \& al., 2005). However the fact that T. thermophilum is a member of Thuidium is quite obvious from the simple comparison of substitutions of nuclear (Fig. 2) and chloroplastic (Fig. 3) loci, as well as from the parsimony analysis (Fig. 4).

Table 1. Genbank accessions numbers

Species	ITS1	ITS2	trnL-F
Abietinella abietina (Hedw.) M. Fleisch.	AY009802	AY009802	AY009850
Actinothuidium hookeri (Mitt.) Broth.	AY568547	AY568547	
Haplocladium angustifolium (Hampe \& Muell. Hal.) Broth.	AY528884	AY528885	
Haplocladium virginianum (Brid.) Broth.	AF168160	AF168160	
Haplohymenium triste (Cesati) Kindb.	AY568551	AY568551	
Helodium blandowii (F. Weber \& D. Mohr) Warnst.	AY009803	AY009803	
Heterocladium macounii Best	AY528894	AY528895	
Lescuraea incurvata (Hedw) Lawt.	AY693661	AY693661	
Leskea gracilescens Hedw.	AF176277	AF176277	
Leskea polyacrpa Hedw.	AY528889	AF516151	AY527134
Lindbergia brachyptera (Mitt.) Kindb.	AY695760	AY695763	
Lindbergia duthie Broth.	AF516170	AF516153	
Mamillariella geniculata Laz.	AY693652	AY693652	
Myurella sibirica (Muell. Hal.) Reim.	AJ288415	AJ277227	
Pseudoleskeella catenulata (Brid. ex Schrad.) Kindb.	AY695747	AF516154	AY683578
Pseudoleskeella nervosa (Brid.) Loeske	AF516167	AF516152	
Pseudoleskeella papillosa (Lindb.) Kindb.	AY695753	AY695784	
Pseudoleskeella tectorum (Funck ex Brid.) Kindb. ex Broth.	AF516168	AY695776	
Pseudoleskeopsis imbricata (Hook. \& Wilson) Ther.	AY693653	AY693653	
Pseudoleskeopsis zippelii (Dozy \& Molk.) Broth.	AY695749	AY695777	
Rauiella fujisana (Paris) Reimers	AY568546	AY568546	AY683600
Rigodiadelphus robustus (Lindb.) Nog.	AF516166	AF516156	
Thelia asprella (Schimp.) Sull. \& Lesq.	AJ288413	AJ277225	
Thuidium assimile (Mitt.) A.Jaeger	AJ416442	AJ416442	
Thuidium cymbifolium (Dozy \& Molk.) Dozy \& Molk.	AY568542	AY568542	
Thuidium delicatulum (Hedw.) Bruch et al.	AF176278	AF176278	AF161132
Thuidium glaucinoides Broth.	AY568544	AY568544	
Thuidium glaucinum (Mitt.) Bosch \& Sande Lac.	AY568540	AY568540	
Thuidium kanedae Sakurai	AY568541	AY568541	
Thuidium tamariscinum (Hedw.) Bruch et al.			AF023770
Thuidium thermophilum Czernyadjeva	EF368013	EF368013	EF368012

This fact is important in terms of circumscription of the genus: unipinnate branching may occur in this genus, although indeed it is rare. Two hypotheses for further studies can be tested: either T. thermophilum is really basal to all bipinnate species, being an ancient relic surviving in "greenhouse conditions" near one of few natural heating systems. Otherwise the loss of ability to produce bipinnate branching would be a secondary reduction, being a result of "relaxation" due to growth in a "resort" habitat. The additional molecular studies may be able to choose among these two (plus others?) possibilities.

In the type locality, Thuidium thermophilum grows in the Kirevna River valley (flowing from the slopes of Alnei Volcano in the Sredinny Range). This valley forms a deep canyon across the plateau; its cliffy banks are formed by acidic
andezite, basaltic lava rocks and volcanic tuffs. Thermal springs occur along several km in the valley; its water has a basic reaction and a low $\mathrm{H}_{2} \mathrm{~S}$ content (see details in e. g., Lyubimova, 1961; Pijp, 1937). The immediate surroundings of the springs lack any vegetation, but more distantly wet meadows and swamps develop. Thuidium thermophilum was found three (of five) times on warm (or hot) and wet soil, where the vegetation is primarily composed of mosses: Aulacomnium palustre (Hedw.) Schwägr., Climacium dendroides (Hedw.) F. Weber \& D. Mohr, Entodon rubicundus (Mitt.) A. Jaeger, Pleurozium schreberi (Brid.) Mitt., and Dicranum leioneuron Kindb. Among the frequent vascular plants are Agrostis scabra Willd., Artemisia opulenta Pamp. and Fimbristylis ochotensis (Meinsh.) Kom. Once Thuidium thermophilum was
collected on soil in a fern-dominated Alnus forest, once on rocks along a cold stream, but in both cases these localities were quite close to hot springs. Interestingly, Entodon rubicundus, more southern in distribution, grows in Kamchatka only near thermal springs, as well as the Kamchatkan endemic, Fimbristylis ochothensis.

ACKNOWLEDGEMENTS

The authors are grateful to Olga Chernyagina for making her moss collections at our disposal, to Elena Ignatova for providing the illustration of the species and to William R. Buck for correction of English. The work was supported by RFBR 05-04-48705, 05-04-48035, 06-04-49493 and 06-05-64137.

Literature Cited

BUCK, W. R. \& H.A. CRUM 1990. An evaluation of familial limits among the genera traditionally aligned with the Thuidiaceae and Leskeaceae. - Contr. Univ. Michigan Herb. 17: 55-69.
BUDYAKOVA, A.A., M.S. IGNATOV, S.P. YATSENTYUK \& A.V. TROITSKY 2003. Systematic position of Habrodon (Habrodontaceae, Musci) as inferred from nuclear ITS1 and ITS2 and chloroplast trnL intron and trnL-trnF spacer sequence data. - Arctoa 12: 137-150.
CRUM, H.A. \& L.E. ANDERSON 1981. Mosses of Eastern North America. Vol. 2. - New York, Columbia University Press: 664-1328.
GARDINER, A., M. IGNATOV, S. HUTTUNEN, A. TROITSKY 2005. On resurrection of the families Pseudoleskeaceae Schimp. and Pylaisiaceae Schimp. (Musci, Hypnales). - Taxon 54(3): 651-663.
GOLOBOFF, P.A. 1994. NONA: A Tree Searching Program. - Program and documentation, published by the author, Tucuman, Argentina.
LAWTON, E. 1971. Moss flora of the Pacific Northwest. Nichinan, Hattori Bot. Lab., 362 pp +195 pls.
[LJUBIMOVA, E.L.] ЛЮБИМОВА Е.Л. 1961. Камчатка. - [Kamchatka] M.: 189 c.

NIXON, K.C. 1999a. Winclada (BETA) ver. 0.9.9. available at http://www.cladistics.com/about_winc.html.
NIXON, K.C. 1999b. The parsimony ratchet, a new method for rapid parsimony analysis. Cladistics 15: 407-414.
NOGUCHI, A. 1991. Illustrated moss flora of Japan. Vol. 4. Nichinan, Hattori Botanical Laboratory: 743-1012.
[PIJP, B.I.] ПИЙП Б.И. 1937. Термальные ключи Камчатки. - [Hot springs of Kamchatka] M.-Л. [Moscow, Leningrad].
TOUW, A. 2001. A review of the Thuidiaceae (Musci) and a realignment of taxa traditionally accommodated in Thuidium sensu amplo (Thuidium Schimp., Thuidiopsis (Broth.) M. Fleisch., and Pelekium Mitt.) including Aequatoriella gen. nov., and Indothuidium gen. nov. - J. Hattori Bot. Lab. 90: 167-209.
TOUW, A. 2001. Tropical Asian and Pacific Thuidiaceae. J. Hattori Bot. Lab. 91: 1-136.

WATANABE, R. 1972. Thuidiaceae in Japan and adjacent areas. - J. Hattori Bot. Lab. 36: 71-320.

[^0]: ${ }^{1}$ - V. L. Komarov Botanical Institute Rus. Acad. Sci., Prof. Popov Str., 2, St. Petersburg, 197376 Russia Россия 197376, Санкт-Петербург, ул. Проф. Попова, 2, Ботанический институт им. В. Л. Комарова PAH.
 ${ }^{2}$ - Institute of Biology and Soil Science of Far Eastern Branch of Russian Academy of Sciences, Prospect Stoletiya, 159, Vladivostok 690022 Russia - Россия 690022, Владивосток, Проспект Столетия, 159, Биолого-Почвенный институт ДВО РАН
 3 - Main Botanical Garden of Russian Academy of Sciences, Botanicheskaya 4, Moscow 127276 Russia Россия 127276 Москва, Ботаническая 4, Главный ботанический сад РАН
 ${ }^{4}$ - A. N. Belozersky' Institute of physicochemical biology, Moscow State University, Moscow 119992 Russia Россия 119992 Москва, Московский государственный университ, НИИ физико-химической биологии им. А. Н. Белозерского.

