ON THE SYSTEMATIC POSITION OF THE MOSS GENUS CATOSCOPIUM, WITH A NEW APPROACH TO THE PERISTOME REDUCTION STUDY
 О СИСТЕМАТИЧЕСКОМ ПОЛОЖЕНИИ МХОВ РОДА CATOSCOPIUM, С ОБСУЖДЕНИЕМ НОВОГО ПОДХОДА К ИЗУЧЕНИЮ РЕДУКЦИИ ПЕРИСТОМА

Michael S. Ignatov ${ }^{1}$, Ulyana N. Spirina ${ }^{1,2}$, Elena A. Ignatova ${ }^{3}$, Michael Krug ${ }^{4} \&$ Dietmar Quandt ${ }^{4}$
МИХАИЛ С. ИГНАТОВ ${ }^{1}$, УЛЬЯНА Н. СПИРИНА ${ }^{1,2}$, ЕЛЕНА А. ИГНАТОВА ${ }^{3}$, МИХАИЛ КРУГ ${ }^{4}$, ДИТМАр КВАНДТ ${ }^{4}$

Abstract

The early stages of the peristome development in the monospecific moss genus Catoscopium were studied. The peristomial formula $4: 2: 3$ is the most common, although there are deviations, increasing in number at later stages of development. Additional cell divisions were observed in all peristomial layers, as well as an "under-performance" of unequal cell divisions, resulting in the formula $4: 2: 4$-opposite. The most commonly observed $4: 2: 3$ pattern does not contradict the placement of Catoscopium among haplolepideous mosses, but at the same time it does not necessarily confirm this placement, because the 4:2:3 pattern appears to be present in basal arthrodontous mosses, and is not so rare in diplolepideous alternate mosses at the early stages. The latter was found in Podperaea, a hypnalean moss with only slightly reduced "perfect" peristome, involved in the present study for comparison for trait comparisons with Catoscopium. Likewise, the formula 4:2:4-opposite appears in unrelated phylogenetic lineages, being in many cases associated with various patterns of morphological reduction. Phylogenetic analysis based on four mithochondrial (cobi420, nad2 with nad2i156, nad5 with nad5i753, nad5-nad4 IGS) and three plastid ($r b c L$, rps 4 , trnL G1) markers is performed, indicating the position of Catoscopium in relation to groups with 4:2:3 and 4:2:4-opposite and 4:2:4-alternate peristomial formulae. A method of total peristome structure visualization by the RGB-coded schemes of the total capsule circumference is introduced.

Резюме

Abstract

Изучены ранние стадии развития перистома монотипного рода Catoscopium, систематическое положение которого трактовалось разными авторами различно. Формула перистома 4:2:3 наиболее часто встречается у Catoscopium на ранних стадиях развития спорофита, однако отклонения от нее многочисленны, и их число возрастает на более поздних стадиях. При этом во всех слоях клеток, участвующих в образовании перистома, наблюдаются как дополнительные деления клеток, так и "недопредставленность неравных клеточных делений", обуславливающих образование формулы $4: 2: 3$, что приводит к образованию 4:2:4-супротивному типу. Такое строение согласуется с положением Catoscopium в филогенетических деревьях в основании клады, образованной гаплолепидными группами, но в то же время не является строго специфичным для такого решения, поскольку 4:2:3 иногда встречается и в наиболее базальных группах артродонтных мхов, а также она представлена и на ранних стадиях развития диплолепидных-очередных групп, что иллюстрируется в статье на примере рода Podperaea, представителя Hypnales, с весьма незначительно редуцированным перистомом, близким по строению к "полно развитому" типу. Podperaea была включена в анализ для сравнения с Catoscopium, степень редукции перистома которого значительно сильнее. Отмечается, что формула 4:2:4 с супротивным расположением элементов перистома появляется в разных филогенетических линиях, в большинстве случаев связанных с редукцией перистома. Обсуждение их филогенетичекого положения проведено на основе анализа по 4 митохондриальным (cobi420, nad2 with nad2i156, nad5 with nad5i753, nad5-nad4 IGS) и трем хлоропластным (rbcL, $r p s 4, \operatorname{trnL} \mathrm{G} 1)$ участкам генома. Предложен метод представления полной структуры перистома с помощью развертки с использованием RGB-кодировки.

KEYWORDS: bryophytes, phylogeny, morphology, peristome, haplolepideous, unequal cell divisions

[^0]
INTRODUCTION

Recent advances in the molecular phylogenetic studies have resulted in a number of unexpected and surprising misplacements in many groups of living beings. The general pattern is that in groups with low levels of morphological diversity, systematic reevaluations from molecular data tend to be most numerous. In mosses many genera were transferred to other families, and relationships of many families were reevaluated against traditional classifications (Newton et al., 2000; Ignatov et al., 2007; Goffinet et al., 2009; Olsson et al., 2009; Huttunen et al.,2012a; Stech et al., 2012). This is especially true for taxa with reduced peristomes (compare Huttunen et al., 2012b), the complex organ of spore release in mosses, which provides the basis for most moss classifications. For example, the genus Archidium, previously considered extremely primitive and placed in a separate subclass (Snider, 1975a,b; Crum \& Anderson, 1981), appeared to be nested in the haplolepideous clade (Newton et al., 2000; Cox et al.; 2004; Stech et al., 2012). At the same time, Oedipodium, traditionally placed in or near the Splachnaceae, appears to be sister to all Bryalean moss groups with transverse capsule dehiscence (Shaw \& Renzaglia, 2004; Goffinet et al., 2009), and probably it is even primarily eperistomate (Shimamura \& Deguchi, 2008; Hyvönen et al., 2004). Similarly, once no sporophyte is known at all the systematic placement of the taxon is often controversial, especially in the presence of non-conclusive gametophytic characters. A remarkable example represents Pulchrinodus which has been placed all over the moss tree of life (compare Allen, 1987) until molecular studies revealed its placement at the base of the Bryales (Quandt et al., 2007). There are however opposite examples, where peristomes have complex structures allowing different interpretations of their phylogenetic origin, e.g., in Timmiales. Their phylogenetic position among early diverging arthodontous mosses became apparent only after molecular phylogenetic analyses (e.g. Newton et al., 2000; Cox et al., 2004; Wahrmund et al., 2010) and subsequent developmental studies resulted in reinterpretations of the peristome morphology in light of the different phylogenetic hypotheses (Budke et al., 2007).

The genus Catoscopium, with a single circumpolar mire species C. nigritum (Hedw.) Brid., was originally classified in the Meesiaceae (Schimper, 1860; Limpricht, 1895), but was later placed in its own family although still next to Meesiaceae (Brotherus, 1924; Podpera, 1954). An alternative placement has been suggested by Griffin \& Buck (1989), who referred Catoscopium to Bartramiaceae. These classification decisions were based on weak morphological evidence due to considerable peristome reduction in Catoscopium: the exostome teeth are irregular, although they still have a distinct median line, while the endostome is represented by a poorly developed basal membrane, not allowing a clear understanding of the
position of its parts relative to the exostome teeth (Figs. 1-2). However, diplolepideous peristomes at various stages of reduction are common in both Bartramiaceae and Meesiaceae, and this fact may explain the placement of Catoscopium near or within these families. Even in more recent treatments its position is a rather controversial one. While in Buck \& Goffinet (2000) it is found within the Splachnales, Goffinet et al. (2009) place it in the Bryales. In contrast Ignatov \& Ignatova (2003) accepted Catoscopium in a separate order among early diverging arthodontous mosses. Similarly, recent molecular analyses reported Catoscopium among early diverging haplolepideous mosses (Quandt et al., 2007; Wahrmund et al., 2010), a view shared by Frey \& Stech (2009). However a detailed discussion on its morphology was never provided, partly due to a partial peristome reduction (Fig. 1AC), precluding an easy approach to understanding its morphology.

Peristomes play a considerable adaptive role in spore release (Shaw \& Robinson, 1984), and in more than 95% of species they belong to an advanced arthrodontous type. Peristomes of this type are usually developed from three rings of cells that partly decompose and form from retained material in two rows of peristomial elements. Adjoining material of the inner cell walls of the outer peristomial layer (OPL) and outer cell walls of the middle, or primary peristomial layer (PPL) form the outer ring of teeth, the exostome, while cell walls between the PPL and inner peristomial layer (IPL) build another ring, the endostome, usually composed of a more delicate structure. Edwards (1979) introduced the peristomial formula, counting cells in these three layers for $1 / 8$ of sporophyte circumference.

Three types of arthrodontous peristomes are usually recognized as the main ones (Shaw \& Robinson, 1984; Edwards, 1984) and recently they appeared to be quite congruent with the molecular phylogenetic results (e.g., Shaw et al., 2003; Tsubota et al., 2004; Shaw \& Renzaglia, 2004; Cox et al., 2010; Wahrmund et al., 2010; Shaw et al., 2011). These are haplolepideous, diplolepi-deous-opposite and diplolepideous-alternate peristomes (Fig. 3).

Their difference among peristome types becomes apparent at an early stage of differentiation in the peristomial layers, when the IPL undergoes a division which turns it from 8 -celled to 16 -celled. At the stage when the 2:2:1 pattern is transforming into $4: 2: 2$, the divisions in IPL can be:

1) aligned with the anticlinal cell walls in the PPL, resulting in the diplolepideous-opposite, or "Funaria"type, with variants 4:2:2, 4:2:4 or 4:2:8;
2) offset to anticlinal cell walls in the PPL and with one subsequent division of the larger cell, resulting in haplolepideous, or "Dicranum"-type, 4:2:3;
3) offset to anticlinal cell walls in the PPL, with 2-6 subsequent divisions in IPL and misplacing of the previ-

Fig. 1. Catoscopium nigritum, peristomes under stereomicroscope (A-C) and SEM (D-K) from Yakutia (A-C) and Italy (D-K): AD, capsule mouths with peristomes; E-F, operculum with attached exostome teeth remnants (TR); G-H, exostome teeth, showing variation and preperistome; I-K, ornamentation of dorsal surface of exostome teeth, showing presence (K) or absence of margin (M).

Fig. 2. Catoscopium nigritum, SEM images of peristome; specimens from Italy (A-C, E-H) and Arkhangelsk (D, I). A-B, D, peristome from outside, showing properistome presence (Pp); C, longitudinal section, showing exostome tooth and properistome layers at its base; $\mathrm{E}-\mathrm{I}$, peristome from inside: mostly exostome is visible (Ex), and only at places a thin membrane of endostome is discernible (En); some teeth have ventral trabeculae (VT), which are more commonly absent.

Primary eperistomate (Sphagnum, Andreaea,

Fig. 3. Scheme of the main clades and main types of peristome structure.

[Funariaceae (4:2:2 opp., or 4:2:4 at base), Encalyptaceae (4:2:4 opp.), Disceliaceae (4:2:4, opp.)

Bryales, Hypnales: 4:2:8 alternate variants include 4:2:4, $6,8,10,12,14$
ously aligned or nearly aligned anticlinal cell walls simultaneous with PPL cell enlargement, resulting in diplolepideous-alternate, or "Bryum"-type, with variants $4: 2: 4,4: 2: 6,4: 2: 8$, or more rarely $4: 2: 10$ and as an exception 4:2:12 and 4:2:14.

This scheme with three main peristome types is based on careful studies of peristome development done for a number of genera (Evans \& Hooker, 1913; Wenderoth, 1931; Saito \& Shimoze, 1955; Saito, 1956; Stone, 1961; Edwards, 1979, 1984; Shaw \& Anderson, 1988; Shaw \& Allen, 1985; Shaw et al., 1987, 1989a,b; Budke et al. 2007). However there are also a number of exceptions, observed both within a single cross-section and in species with peristome structure different from "typical" for families where they belong. For example, Magill (1987) found a diplolepideous-opposite peristome in Dichelodontium (Ptychomniales: Hypnanae), instead of diplol-epideous-alternate. Splachnum and Tetraplodon were shown to have opposite $4: 4: 4$ and $4: 2: 8$ cases, respectively (Schwarz, 1994), although their position in the "diplolepideous-alternate" clade has been confirmed in all recent molecular phylogenies cited above. Schwarz (1994) found that the peristome of Ephemerum has an opposite (0):4:4 structure, despite that this genus is a
member of the haplolepideous clade, where 4:2:3 is the basic formula. The 4:2:3 formula was noted for Aulacomnium heterostichum (Blomquist \& Robertson, 1941), although Shaw et al. (1989b) criticized their interpretation of cell arrangement as being incomplete. The genus Glyphomitrium, despite being resolved in the haplolepideous clade (Cox et al., 2010), always has an unstable proportion of IPL and PPL cells (Estébanez et al., 2006).

Examination of illustrations in almost all publications, in fact, always reveals "mistakes in divisions" among "typical" patterns, i.e. those are most common among the other parts of the same section, and other sections of the same capsule, which usually agree with its systematic position supported by phylogenetic evidence. For example, Shaw et al. (1987) in Fig. 14 for Diphyscium, illustrate in different octants of the same section proportions of 4:2:3, 4:2:3, 4:3:4, 4:2:4, 4:2:3, 4:2:3, 4:2:3*, 6:3:4. The octants marked here with asterisk have an offsetted IPL in the fashion characteristic for diplolepi-deous-alternate peristomes: IPL anticlinal cell walls are displaced relative to anticlinal walls in both the PPL and OPL. Figure 8 in Goffinet et al. (1999) of Schlotheimia rugifolia (Hook.) Schwägr. has octants 4:2:4, 4:2:3, 4:2:4, 4:2:4, 4:2:3, 4:2:4, 4:2:3, 4:2:2.

To avoid a subjective evaluation of the anticlinal cell positions, Budke et al. (2007) suggested a quantitative method. It proved that the complex peristome of Timmia belongs to the opposite type in IPL versus PPL arrangement with great confidence, as 96% of cell walls were found to be aligned, and only 4% offset (and in all cases only slightly shifted, for less than 33% along periclinal cell wall, and never more than that).

However, a preliminary study of Catoscopium revealed a frequent co-occurrence of both 4:2:3 and 4:2:4 patterns within the same cross section. Thus we undertook an expanded analysis of whole series of peristome sections to answer two questions:

1) is it possible to recognize the basic peristome formula in the irregularly developed peristome of Catoscopi$u m$, and to identify its affinity to basic peristome types;
2) which kind(s) of division errors and displacements are associated with peristome reduction in this species.

MATERIALS AND METHODS

General peristome morphology

Peristomes of the Catoscopium were studied and photographed under light stereo- and compound microscopes, and SEM LEO-430, after gold coating but without other preparation (Fig. 1-2). Specimens used for these observations were taken from MHA herbarium, with sampling from Northern Europe (Arkhangelsk Province, Kumichevo, Ignatov, 4.VIII.1988), Caucasus (Georgia, Abramova, Exsiccate of LE \#78), and Asia (Altai, Ignatov \& Ignatova 12-492; Taimyr, Fedosov 08-72; Yakutia, Teply Klyuch, Ignatov \& Ivanov, 6.VII.1912). One specimen from Southern Europe (Italy, Prov. Bozen: Pustertal, Dolomiten, Pragser Wildsee, Schäfer-Verwimp 27558) was also used for SEM observations.

As preliminary observations did not reveal any marked differences between populations, possible heterogeneity of the studied plants was not further considered.

Anatomy study

The material for this study was collected in Yakutia (voucher Yakutia, Tomponsky Distr., Teply Klyuch, 6.VII.2011, Ignatov \& Ivanov \#11-2042, MHA), in a rich fen. Young sporophytes $3-5 \mathrm{~mm}$ long were fixed in 4% glutaraldehyde in 2.5% Na-phosphate buffer, pH 6.8 , and stored in it. After storage at $+4^{\circ} \mathrm{C}$, they were post-fixed with 1% osmium tetroxide in the same buffer for 10 h , then dehydrated in 70% ethanol, and then dehydrated through a graded ethanol/acetone series to 100% acetone. After that, samples were embedded in araldite 6005 medium, according to the protocol of manufacturer.

A preliminary study revealed that at the stage when peristomial layers became apparent, it is difficult to determine a peristome formula because adjacent octants have inconsistent patterns: 4:2:3, 4:2:4 aligned, 4:2:4 opposite, and occasionally cases with higher numbers of cells. The PPL in some capsules was composed of 20-22 cells, not 16 . To obtain a more reliable quantitative data, we decided to check not an individual section or few best
"typical" sections, but instead the whole series, allowing a study of peristomial layer structure throughout one young sporophyte. For this purpose we cut the young sporophyte in thinner sections, $2 \mu \mathrm{~m}$ (not $5-8 \mu \mathrm{~m}$, as commonly used in similar studies), to obtain thinner cell wall views and thus to reduce possible noise. Sections were cut with glass knives and put on glass slides without mounting medium. All sections were arranged sequentially on a slide glass, which allows finding the precise distance of each section from the level where regular peristomial structure becomes apparent (Fig. 4A, C-F).

Two capsules were cut longitudinally (Fig. 4A, B) and ten transversely, the latter with series of 30 to 130 sections, $2 \mu \mathrm{~m}$ thick. Thus 60 to $260 \mu \mathrm{~m}$ intervals were included in the study. Among them, two series included a very homogeneous cell arrangement, without obvious peristomial layers (Fig. 4G). It seems that they comprise sporophytes that did not reach a fully developed state, appearing similar to that shown in Fig. 1C, which occasionally occurs in Catoscopium collections.

One series was started from four cells of the so-called fundamental cross, surrounded by 1-2 rings of amphithecial cells, so the formula was $0: 1$. Early stages where only two peristomial layers occur, [-]:2:1, were seen in two series (Fig. 4C). Four series represent stages starting from 2:2:1 in the upper part, and with the transition to 4:2:2 shortly below. Further below, from ca. 100-120 $\mu \mathrm{m}$ from the level where regular peristomial structure becomes recognizable, the PPL was represented by 17-24 cells, rarely more, and it is likely situated at about the capsule mouth or somewhat below it (Fig. 4F).

The sectioning was done from the sporophyte apex, whereas the interval with differentiated peristomial layers was the focus of the present study. It is visible in the longitudinal section (Fig. 4A) between the arrows, as we can conclude from a comparison of sections, including their number (distance from upper to lower one in the series) and also from the width of the peristomial layers.

As cell walls appeared to be obscured by collapsed cytoplasm under the light microscope, we conducted observations by means of fluorescence of cell walls stained by berberin and photographed under confocal LSM Olympus FV1000 using exitation of the blue lazer, $\lambda=473 \mathrm{~nm}$, and making Z-Stacks of 4-7 shoots.

As the cases of unaligned IPL and PPL cell walls were obviously numerous, just a percentage of offset to aligned cells, a criterion successfully applied to Timmia (Budke et al., 2007), may not represent the whole complexity. Thus a special procedure was developed to represent this complexity.

Anatomy data performance

Each photograph was reformatted in a geographic program to the "Mercator projection" (orthogonal projection of the Earth maps) using a basically geographic software ESRI ArcGIS 10.x (http://www.esri.com). The

Fig. 5. Explanation of procedure of peristome structure RGB-coding: A - cross section, B - the same, transformed to "mercator" orthogonal projection; C - color coding of eight variants of peristomial layer cell walls presence or absence within $1 / 64$ of the circumference; D - row of 64 color rectangles, corresponding to one transverse section. Scale bar: $10 \mu \mathrm{~m}$.
only modification was the change of 5° for minimal sector (default for Earth studies) to 5.75°, which subdivides the circular peristome image into 64 sectors (Fig. 5). As structural units in peristomes usually number 16 or 32 or, more rarely 64 , we feel that such subdivision is detailed enough. Although 96 in some Bryum species and even 112
elements in Roellia, are known, these high numbers were ignored for the present study; however they may be easily added to the coding procedure if necessary.

A very important additional step during this transformation was to set zero, which allows aligning sections of the series with each other. Fortunately, well-vis-

Fig. 6. Schemes of the main peristome type development. Before 2:2:1 pattern the development is principally identical for all arthrodontious types. Series [2:2:1] \rightarrow [4:2:4 opp] comprise formation of diplolepideous opposite peristome, through the series of divisions with anticlinal cell walls aligned (cf. Fig. 11D,F, pink and red arrows). Series [2:2:1] \rightarrow [4:2:3] leads to haplolepideous 4:2:3 structure through offset anticlinal cell wall formation (cf. Fig. $11 \mathrm{C}, \mathrm{E}$, cyan and yellow arrows). Series $[2: 2: 1] \rightarrow\{$ though $4: 2: 3\} \rightarrow[4: 2: 4$ alt $]$ is a transition to diplolepideous alternate type (cf. Fig. 11A,B), which is a result of the most complicated displacements in peristomal layers (Shaw et al., 1989a).
ible crosses within the sporogene tissue (results of first three divisions in sporophyte), inside from the peristomial layers, help in most cases to accomplish this procedure without difficulty. The next moderately straightforward step was to check if each of 64 sectors in 3 layers had a cell wall or not. After this, one transverse section of capsule was transformed into 3×64 matrix, with states of + (present) or - (absent).

Attempts to use various 3D methods appeared to be too cumbersome. Coding in "RGB mode" (Fig. 5) provides a visual representation of the pattern in relation to the standard color patterns of the main types of peristome structure (Fig. 6).

We coded IPL as blue, PPL as green, and OPL as red. When one of 64 columns has a cell wall in only one layer, the color of this layer is a resulting one. When no cell wall occurs in the column, it is black, while if cell walls are in all three layers, the resulting color will be white, suggesting a complex nature of white light. Other combinations are also easy to interpret; for example, red + green $=$ yellow, red + blue $=$ pink (magenta), green + blue=cyan (Fig. 5).

In this way, one section is transformed into a band of 64 rectangles, each filled by one of 8 colors. The advantage of the method is that it allows an easy overview of many sections in a series with one figure, and provides an immediate impression of the peristome structure pattern not only at one level, but tracing it along all peristome teeth, checking if the structure is stable all along it or is changing, and in the latter case, to what extent and in what way.

Especially important for our purpose is the position of the white color, which indicates an aligned position in all three peristomial layers, as well as the yellow one, suggesting displacement, which is essential information for arthrodontous peristomes except for the basal group of four orders with diplolepideous-opposite peristomes: Gigaspermales, Funariales s. 1. (incl. Disceliales), Encalyptales, and Timmiales. Alternation of white, black and pink and total absence of yellow color is a characteristic of them. Contrary to that, the yellow-coded offset position of IPL against PPL+OPL indicates the structure of two main peristomial types: haplolepidious (Grimmiales, Dicranales, etc.) and diplolepideous-alternate (Bryales, Hypnales, etc.) peristomes.

Each of the main peristomial structures has a specific color pattern (Fig. 6), and the distribution of these patterns can be easily seen around the combined circumferences (Figs. 7-8). Note however that a slight difference in anticlinal cell wall position may change the color pattern (Fig. 6, haplolepideous; Fig. 7E-H). The 'isomerous' color patterns, however do not transfer from one type of the principal peristomial structure to another one.

Diplolepideous-alternate peristomes with numerous cilia, reflected by a formulae of 4:2:8-12(-14) may have very closely arranged anticlinal divisions, resulting in 2
and probably sometimes even 3 divisions within one of $1 / 64$ sectors. This case almost never occurred in the present study of Catoscopium, although in diplolepideousalternate peristomes it may happen and in this case may be marked by an asterisk for 2 and a double asterisk for 3 divisions in one layer within one sector.

After such RGB-coding by colors (Figs. 5), peristomes are ready to analyze. However, being applied to Catoscopium, which is likely a rather difficult and irregular case (Figs. 7-8), we had to be sure that it works in mosses with more regular peristome structure. For such a "control" we undertook a similar coding for Podperaea krylovii (Podp.) Z.Iwats. \& Glime, a representative of Hypnales: Amblystegiaceae (Ignatov et al., 2006, 2007) or Hypnaceae (Goffinet et al., 2009), with a well developed or only slightly reduced peristome. Comparative to the fully developed diplolepideous-alternate peristome with 3-4(-6) cilia in the endostome (as in some species of Bryum), Hypnales display a somewhat less developed scenario, with most commonly 2 or more rarely 3 cilia, with common reductions to one or no cilia. The Podperaea endostome in most cases has one cilium (corresponding the formula $4: 2: 6$), and more rarely two cilia or occasionally none between neighboring segments; three cilia were never observed in the studied collection of this species. Otherwise Podperaea comprises a case, which usually is described as a "hypnoid", "perfect" or "fully developed" peristome (Fig. 9).

The protocol of preparation was essentially the same as for Catoscopium. Material used for this study was taken from the cultivation in MLR32 Sanyo, where the moss successfully grew about 9 months after being collected in September of 2013, in the Primorsky Territory of Russia (voucher Ignatov and Ignatova \#13-1456, MHA).

Editing for the better performance

A disadvantage of this method is a sensitivity to noise because of the imperfect circles of peristomial layers that may also appear in the course of preparation, and such changes may lead to a modification of the color pattern. However this sensitivity is relative: wrong attribution of one anticlinal cell wall to a nearby $1 / 64$ sector is easily visible and correctable, as a re-attribution of a cell wall to neighboring sector does not affect the overall peristomial formula. There are three variants for 4:4:4 (Figs. 7H, H', and H") and three variants for 4:2:3 (Figs. 7E, E', and E"). For an easy understanding of the pattern in the subsequent scheme (cf. Fig. 78) the patterns 7 E ' and 7 E " were substituted by 7 E . It is important in this case that the pattern 4:2:4, both diplolepi-deous-opposite and diplolepideous-alternate, comprise 4 color repeats, both unique for each of them (cf. Fig. 6), and only the haplolepideous 4:2:3 pattern has 8 color repeats in all three variants. And finally, 2 color repeats indicating a 4:4:4 pattern, should also be considered in the Catoscopium peristome, considering the opinion about its position in the Splachnales (Buck \& Goffinet, 2000). Splachnum has a 4:4:4 pattern (Schwarz, 1994).

Molecular phylogenetic analyses

Two different molecular data sets were compiled for the present study. 1) A concatenated data set of mitochondrial nad5 and plastid rps 4 sequences for a small taxon subset consisting only of genera used for peristome development studies (Table 1), supplemented with few phylogenetically important genera, e.g. nomenclatural types of families and orders. Sequences were downloaded from Genbank, except for one newly generated rps 4 sequence for Podperaea krylovii (specimen: Russia, Altai, Ignatov \#1/10, MHA, KT388714). 2) A slightly modified version of the bryophyte backbone data set by Wahrmund et al. (2010). In order to be more representative for the study group we included available sequence data for three Diphyscium species, instead of using a compound sequence for the genus. In addition, we included sequence data for Scouleria aquatica and Bryoxiphium norvegicum, but slightly reduced the outgroup sampling, while complementing the data set with another plastid marker, the group I intron residing in $\operatorname{trnL}(\operatorname{trnL} \mathrm{G} 1)$ which was readily available in GenBank (Appendices 1-2).

Alignment of the sequence data for both data sets was guided by the already established bryophyte backbone data set from Wahrmund et al. (2010). The taxonomic adjustments required only few alignement changes mainly in order to accommodate the microstructural evolution of group I intron residing in nad5 (nad5i753). Similarly, for the appended $t r n L$ G1 the published structurally guided alignment of the intron for bryophytes was used as scaffold (Quandt \& Stech, 2005). Based on the criteria laid out in Kelchner (2000) required modifications of the alignments were manually performed in PhyDE® v0.995 (www.phyde.de). Hotspot definitions followed Wahrmund et al. (2010) for both data sets. As trnL G1 was not included in Wahrmund et al. (2010) ambiguous parts of the alignment were defined to five hotspots following the strategy in Olsson et al. (2009). Detected inversions were positionally separated in the alignment and included as reverse complemented in the phylogenetic analyses, compare Quandt et al. (2003) and Borsch \& Quandt (2009).

Maximum Likelihood (ML) reconstructions were done using RAxML (Stamatakis, 2014), applying the GTRGAMMA model for nucleotide evolution and F81 for indels. Internal branch support was estimated by heuristic bootstrap (BS) searches with 10,000 replicates each. Bayesian analyses were performed with MrBayes v3.2.5 (Ronquist et al., 2012), generally applying the GTR $+\Gamma+\mathrm{I}$ model. The a priori probabilities supplied were those specified in the default settings of the program. Four runs with four chains (10^{6} generations each) were run simultaneously, with the temperature of each heated chain set to 0.2 . Chains were sampled every 1000 generations and the respective trees written to a tree file. The output files were examined in Tracer v1.6 (Rambaut et al., 2014) in
order to evaluate the effective sampling size and to ensure that the chains reached stationarity within the first 25%, which were discarded prior calculations of the consensus tree and the posterior probability of clades. Consensus topologies and support values from the different methodological approaches were compiled and drawn using TreeGraph 2.4.0-456 beta (Stöver \& Müller 2010).

Results

Observations under light microscope and SEM showed a rather similar peristome structure in different specimens of Catoscopium (Figs. 1-2). In all studied specimens the peristome was strongly fragile, so in many cases tooth parts remained on the sticky paper used for mounting capsules on stubs for SEM observations, or attached to the inner side of the operculum (Fig. 1E-F). Teeth along the mouth were often represented by just their basal parts, and capsules with maximally developed peristomes were found quite a few times.

Exostome teeth have a median line on their outer surface; this surface is irregularly reticulate and papillose over most of the outer cell wall plates, except in a zone near the median line and plate margins, where the surface is perfectly smooth in some specimens. Sometimes the ornamentation reaches the tooth margin (Fig. 1HK). A similar reticulate and papillose ornamentation also occurs on low faces outside the exostome, they are interpreted here as a preperistome of a very poor expression (Fig. 2A-D). It is formed by 1-3 rows of amphithecial cells outside of OPL (Fig. 2C-D).

The exostome teeth are 16, but sometimes 15 or 17 due to lateral fusion or division of some into small unequal entities, but these cases are rare and if teeth are more or less equally developed their number is 16 without exception. Teeth are irregular in shape, as plates are arranged not exactly one above another, making them variously curved and eroded (Fig. 1G-H). Dorsal trabeculae are absent, ventral ones are occasionally developed but are commonly very low (Figs. 1I-J, 2E-F). The inner surface of the exostome teeth is covered by large low papillae (Fig. 2G-H) or are smooth (Fig. 2F, I), and both types of surface ornamentation occur on the endostome inner surface as well (Fig. 2H-I), so it is not always apparent which surface is under observation. The adherent highly reduced endostome material is represented by a thin membrane at the tooth bases, only in few places separated by a distance less than one cell length (Fig. 2E, HI), or otherwise the membrane may be firmly joined to the inner surface of a tooth, and in this case it can be recognized by the inner median line (Fig. 2E).

Anatomy study

Peristomial layers were found in eight out of ten capsules cut transversely. They were apparent in (15-) 30 to 120 sections, $2 \mu \mathrm{~m}$ thick, i.e. at (30-)60 to 240 $\mu \mathrm{m}$ intervals. In two series amphithecium cells were quite homogeneous, as explained above (page 394), and were likely associated with ultimate reductions

Fig. 7. Catoscopium nigritum peristome structure shown with RGB-coding, explained in Fig. 5. A-B - one capsule shown as the series of 60 RGB -coded cross sections, thus comprising $120 \mu \mathrm{~m}$. B is the same as A with green-boxed ares of typical 4:2:3 pattern of haplolepideous peristome structure; note that it occurs in many parts, although not throughout the peristome. C-H illustrate variants of color patterns characteristic to main peristome structures.
shown in Fig. 1C. They were not considered further in the present stydy.

Figs. 7 and 8 present two series of cross sections, coded by the RGB method, and Fig. 9 shows the reconstruction of the peristome of Podperaea, the 'control species'. Despite of a strongly variegate and somewhat irregular appearance of the Catascopium series, the characteristic patterns (cf. Fig. 8) can be recognized, although not so apparent as in Podperaea.

Both series of Catoscopium (Figs. 7-8) comprise sporophytes at an early stage of development: additional divisions in PPL appear at the same level from the top, at about 100-120 $\mu \mathrm{m}$ (compare with Fig. 4). Sporophytes at this level are $90 \mu \mathrm{~m}$ in diameter, with endothecium $40 \mu \mathrm{~m}$ in diameter. Nevertheless the appearance of the peristomial pattern is different, the capsule shown in Figs. 7 and 10A (cf. also Table 1A) has many more octants where 4:2:3 pattern is represented compared with Fig. 8 (see also Fig. 10C, Table 1G).

Distal parts of the developing peristome of Catoscopi$u m$ mainly represent the alteration of aligned and offset cell divisions (coded as white and yellow correspondingly), i.e., the stage of 2:2:1 (Fig. 4D), where earlier divisions of "fundamental cross", and one subsequent division in the PPL 8 -celled circumference, which is a pattern almost universally present in all arthrodontous mosses (cf. Fig. 6). Additional amphithecial layers occur at the distal level of peristome (Fig. 4A), being 5-6(-7)-layered, and gradually reducing in number to the level of annulus, where amphithecium is usually 4-layered (cf. Fig. 4E-F).

The number of peristomial layers changes from 2 to 3 in the upper 10-20 $\mu \mathrm{m}$. (Hereafter distances are measured downwards to the level where peristomial layers become distinct). At this level, the PPL cells are already 16, a number which remains up to the middle or base of the teeth.

Anticlinal cell walls in IPL are formed at first only between the octants (Fig. 4C), being 8 in number (white lines in Figs. 7-8) in uppermost $10-20(-30) \mu \mathrm{m}$ (rarely lower in some octants). At this point anticlinal divisions changing the formula from $2: 2: 1$ to $4: 4: 2$ appear. In RGB-coded schemes in Figs. 7-8 they appear as blue flanks along the yellow lines in the uppermost part of peristome. In all 8 sectors of all studied peristome series, the anticlinal cells walls in IPL originate (or, more precisely, become apparent through the present method) at approximately the same level among octants, and always at about 1 cell length distance within one octant. This appears as one blue flank of a yellow line differs from another blue flank to $10-$ $20 \mu \mathrm{~m}$. This must be obligatory, as the division in the larger cells appears as a result at the stage of transition from $2: 2: 1$ to $4: 2: 2$ (Fig. 11A to 11 B , and from 11 C to 11 D) and can not divide simultaneously to form 4:2:3 pattern.

This haplolepideous 4:2:3 pattern has been found in the distal parts in series of sections in Catoscopium, although the process in individual sporophytes may differ substantially (Fig. 10, Table 1).

Divisions in the OPL are 16 since the earlier stages of the series, appearing as white plus yellow lines in Figs. 78. Other divisions in OPL appear at the same level where the IPL divisions start, i.e. at $10-30 \mu \mathrm{~m}$ from the peristome top or, more commonly, slightly above: note that "red lines" penetrate to the "level of white and yellow lines only", i.e. above the "blue lines of IPL divisions". Upper ends of "red lines" occur at about the same level.

Within the interval 20-30(-35) $\mu \mathrm{m}$ the arrangement of anticlinal cell divisions exhibits the haplolepideous, 4:2:3, pattern (Figs. 7 and 8). There are a number of exceptions due to either (1) lack of division in a cell where it would be expected due to the presence of anticlinal cell walls in the same column above and below this cell, or (2) an extra division, also appearing in just one cell or several cells one above another. Such exceptions are relatively few near at the level of transition of ' 8 -celled IPL' to ' 16 -celled IPL', i.e., the place where the 4:2:3 pattern is maximally expressed.

The closer to teeth base of Catoscopium, the more numerous are exceptions from the 4:2:3 pattern, especially due to additional cell divisions in peristomial layers. The number of PPL cells exceeds 16 from about $70-80 \mu \mathrm{~m}$ from the teeth tips (Figs. 7-8), increasing to 19-24 at the level of 200-240 $\mu \mathrm{m}$. However different series exhibit considerable variation in numbers of cells (Table 1).

The 4:2:3 pattern either remains prevailing the individual series (Fig. 7, 10A, Table 1) or becomes rare (Fig. 10B) to totally disappearing (Fig. 8, 10C), being substituted by 4:2:4-6 alternate, 4:2:4 opposite and sometimes 4:4:4-patterns.

The diplolepideous-alternate pattern (cf. Fig. 6) appears occasionally in the upper third of the teeth (Fig. 7), but is more common in their proximal parts (Fig. 8).

The pattern 4:4:4 appears to be quite common in the proximal part of peristome, but at least partly this has to be referred as a methodological error: as the circumference has been divided into 64 segments, the additional divisions in PPL, even with stochastic positions of anticlinal cell walls, raise the probability for 4:4:4 pattern (see also discussion).

In the 'control species', Podperaea, two series were studied, one started from the 3-layered amphithecium (Fig. 9B), i.e., since the 'pre-OPL stage'. The area 'transitional from 8 IPL to 16 IPL' (looking in the Fig. 9 as the level of 'upper ends of blue and red lines', cf. Fig. 7), occurs at $20-30 \mu \mathrm{~m}$ from the top. It is principally the same as in Catoscopium (cf. Fig. 4D). Blue line ends are more uneven, often differing in the same octant at the $20-40(-80) \mu \mathrm{m}$.

The divisions in the IPL at the transition from 2:2:1 to $4: 2: 2$ are mostly offset, thus the $4: 2: 2$ pattern has un-

equal cells in IPL, the larger of them undergoes the next anticlinal division, making pattern 4:2:3 (Fig. 11A, yellow arrows). Further below one of IPL cells in each octant divides, resulting in a 4:2:4-alternate pattern (Fig. 11B, cyan arrows). This divided cell is usually the largest among other cells of a given octant, excluding the cell in octant center, i.e. that one forming subsequently the keel of the corresponding segment. The level where 4:2:4-alternate pattern prevails, i.e. corresponding to the structure with no cilia, were seen in both studied sections at the level ca. $30 \mu \mathrm{~m}$ while further down towards the teeth base another cell other than the "keel progenitor" undergoes a division, approaching a 4:2:6 (Fig. 9F) and occasionally a $4: 2: 8$ pattern.

At the level of $100 \mu \mathrm{~m}$ a complete diplolepideousalternate pattern occurs almost throughout the capsule circumference. The main octants have 4:2:4 (red-blue-yellow-blue) or 4:2:6 (pink-blue-yellow-blue) pattern, except a few areas where the anticlinal cell walls in OPL, PPL and IPL are aligned throughout (shown in Fig. 9 as a white line).

Interestingly, in both Podperaea and Catoscopium, the anticlinal walls of the fundamental cross (in the distant part white and in ideal schemes cyan in color), mostly do not remain well aligned since the rather early stages, except one out of four rays of the "fundamental cross" which is more aligned than others (Figs. 4F, 10). So one (and most distinct) white line in Podperaea is a remnant of the first division.

Phylogenetic analyses

Phylogenetic analyses of both data sets provide a highly congruent picture (Fig. $12 \& 13$), with few conflicts, which are generally unsupported (i.e. posterior probabilities (PP) <90 or bootstrap support $(\mathrm{BS})<80$). The eperistomate groups are at the tree base (compare Wahrmund et al. (2010) for data set 2), followed by the nematodontous lineages, including Tetraphis. Buxbaumia receives a position between the nematodontous and the monophyletic arthodontous mosses (1.00 PP/100 BS). Among early diverging arthodontous mosses, Diphyscium represents the first branching lineage with maximal support. While the characteristic clades containing i) the diplol-epideous-opposite, ii) the haplolepideous, and iii) the diplolepideous-alternate mosses are each highly supported ($\mathrm{PP}>0.99, \mathrm{BS}>90$) the relationships among the three are controversial. Especially the position of Timmia is problematic, as with data set 2 it receives a sister group relation to the haplolepideous and diplolepideous-alternate mosses, whereas with data set 1 it is sister to a clade consisting of diplolepideous-opposite and haplolepideous mosses. However, in both cases support is not significant (i.e. $\mathrm{PP}<0.95$ and $\mathrm{BS}<95$). Catoscopium is continu-
ously resolved as first branching lineage among the haplolepideous mosses, although in data set 2 Timmiella joins Catoscopium in an unsupported clade sister to the rest of the haplolepideous mosses.

DISCUSSION

Although an ideal method of peristome development study implies a complete series of earliest stages from the stage of four cells divided by "fundamental cross" after two first divisions (Fig. 5), it cannot be always applied to some rare species collected in remote areas, due to probable lack of some stages in specimens. However, as it is shown in series of capsule sections at later stages of development, these earlier stages are retained in a more or less intact state in distal parts of the capsule. At least the [0]:2:1 stage is clearly presented in both Catoscopi$u m$ and Podperaea (Fig. 4C and 9B), once more confirming that the peristome has an outstandingly regular structure, due to synchronized divisions both in time and space (Shaw et al., 1987; Shaw \& Anderson, 1988).

As peristome development patterns prior the 2:2:1 stage are almost identical in both haplolepideous and diplolepideous mosses, including Diphyscium and even the nematodontous Tetraphis (cf. Figs. $12 \& 13$ for their phylogenetic positions), our study was concentrated on stages from the transition of $2: 2: 1$ to $4: 2: 2$, which were available in all studied series of cross sections, except those two that exhibited homogeneous cells throughout, without any apparently differentiated peristomial layers (Fig. 4G). Thus, eight series of transverse sections provide the basis for the following discussion of those stages of the peristome development, which are crucial for the peristome attribution to one of the types (Budke et al., 2007; Shaw et al., 2011).

The most common anticlinal divisions in the IPL at the transition of 2:2:1 to 4:4:2 are offset in Catoscopium (Table 1), thus the haplolepideous pattern may be assumed as the "typical" or "basal" for this genus. This result agrees with the previously published molecular phylogenetic analyses (Quandt et al. 2007, Stech et al., 2012; Inoue \& Tsubota, 2014; Wahrmund et al., 2010), as well as the analysis shown in Fig. $12 \& 13$. At the same time, this position of Catoscopium is close to the divergence point of mosses into the three main lineages: haplolepideous, diplolepideous-alternate and diplolepi-deous-opposite groups (cf. Fig. 6) and Timmia.

Therefore the occurrence of the three basic patterns was the subject for a search within Catoscopium.

1. The haplolepideous pattern (4:2:3) occurs at the level of the distal third of teeth in all series obtained, except those where amphithecial cells were homogeneous and peristomial layers were not recognized at all. At the level of transition from 2:2:1 to 4:2:2, the haplolepideous

Fig. 8: Illustrations of the reduction patterns by three parts of peristome of Catoscopium in interval 10-60 $\mu \mathrm{m}$, then $100-130 \mu \mathrm{~m}$ and 160-240 $\mu \mathrm{m}$ from top. Upper part shows presence on 4:2:3 pattern (green boxes) and rarer 4:2:4 opposite pattern (purple box), while in the proximal part of peristome $4: 2: 4$ alternate pattern (blue boxes) occurs among prevailing 4:4:4 pattern (hatched boxes).

Fig. 10. A, B, C: selected sections from series of three Catoscopium developing sporophytes (cf. Table 1), at distance ca $50 \mu \mathrm{~m}$ between A and A^{\prime}, etc.). For each octants the perostomial formula is evaluated and marked in green for $4: 2: 3$; blue for $4: 2: 4$ alternate and purple for 4:2:4 opposite. Black dot in the color circle indicates approximate evaluation.
color pattern is maximally expressed (Figs. 7-8), although in different series the 4:2:3 pattern is not equally clear. Comparison of the series shown in Figs. 7 and 8 demonstrates that in the former this 4:2:3 pattern is expressed in more places than in the latter (cf. also Fig. 10A,C and Table 1). Other examples of poorly expressed haplolepideous pattern are shown in Fig. 4E, 10B.

Note that the 'haplolepideous' lineages of moss evolution, represented by Dicranales s.l. (incl. Pottiales), Grimmiales, Bryoxiphales, Scouleriales, are characterized by the haplolepideous peristome structure, 0:2:3 in general, but in some rare cases short exostome teeth are formed and then peristome formula is 4:2:3, with the exostome having a median line, i.e. being thus diplolepideous. One case of this kind is described by Edwards (1979), for Hypodontium. Thus the 'haplolepideous lineage' may include groups with diplolepideous peristomes, albeit this is a rare case. In ca. 99% of species of 'haplolepideous lineage', in the course of maturation, the haplolepideous peristomes are reduced to a 0:2:3 pattern, with implies the total loss of the exostome.

In the proximal part of peristome (Figs. 7-8) the 4:2:3 pattern is obscured by additional divisions in all the peristomial layers and due to partial displacements of IPL cells to positions offset relative to PPL anticlinal cell walls (Fig. 10C). Interestingly, the total cell number in three
peristomial layers keeps the $4: 2: 3$ proportion: in eight series proximal sections have: $35: 18: 24,42: 21: 28$, etc. Additional divisions were found to be common in Ditrichaceae by Shaw et al. (1989b), resulting in a formula of 4:2:4-6. Approaching formally to the diplolepi-deous-alternate formula, Ditrichim and Dicranum are characterized by no or very slight displacement of anticlinal cell walls between octants, which borders are markedly aligned with anticlinal cell walls of all three peristomial layers. Four out of eight such patterns continue into rays of the fundamental cross, still recognizable in endothecium.
2. The diplolepideous-opposite pattern (4:2:4) at the level of the distal part of the developing peristome appears "as a mirror" from the previous, 4:2:3 one: if a division is not distinctly offset, it is either perfectly aligned or subaligned (slightly offset), but the latter still leads to the scenario as it would be if they were perfectly aligned (cf. example in Fig. 11D, F). In the distal third of the peristome of Catoscopium the 'aligned pattern' appears in various places, where the first division in the IPL has happened not "enough unequal" to preclude the subsequent division in the smaller daughter cell. Usually aligned and subaligned patterns occur in 1-2, rarely in 3-4 octants (Fig. 4, 7-8, 10). The exceptionally homogeneous pattern, mentioned as presented in two series, leads

A(f)									E (1)							
1:1:1	2:2:2	2:1:1	2:2:1	2:2:1	2:2:1	2:2:1	2:2		4:2:2a	4:2:2a	3:2:20	4:2:20	4:2:20	3:2:20	4:2:20	2:2:2a
1:1:1	4:2:1	2:1:1	2:2:1	2:2:1	2:2:1	2:2:1	2:2	:1	4:2:20	4:2:20	3:2:20	4:2:20	4:2:20	4:2:20	4:2:3	4:2:20
3:2:2	2:2:1	3:2:2	3:2:1	4:2:2	2:2:1	3:2:2	4:2	:2	4:2:20	4:2:3	4:2:20	4:2:20	4:2:20	4:2:20	4:2:3	4:2:20
3:2:2	4:2:2	3:2:2	4:2:2	4:2:2	2:2:2	4:2:3	4:2	:2	4:2:3	4:2:2	3:2:2	6:4:2	4:2:2	3:2:2	3:2:2	4:2:2
3:2:2	4:2:3	3:2:2	4:2:2	4:2:3	4:2:2	4:2:3	4:2	:2	4:2:3	5:3:2	3:2:2	6:3:4	4:2:4a	4:2:3a	4:2:30	4:2:2
[4:2:3]	[4:2:3]	4:2:3	4:2:2	4:2:3	4:2:3	4:2:4	4:2									
4:2:3	4:2:3	4:2:2	4:2:3	4:2:3	4:2:3	4:2:3	4:2	:3	F (a)							
4:2:3	4:2:4	4:2:3	4:2:3	4:2:2	5:2:4	3:2:4	4:2	:3	2:2:1	2:2:1	2:2:1	2:2:1	2:2:1	2:2:1	2:2:1	2:2:1
4:2:3	4:2:4	4:2:3	4:2:3	4:2:2	4:2:4	3:2:4	4:2	:3	3:2:1	4:2:1	2:2:1	4:2:1	3:2:2	3:2:2	4:2:1	3:2:1
4:2:3	5:3:4	4:2:3	4:2:3	4:2:2	4:2:2	4:2:3	4:2	:3	4:2:2	4:2:3	4:2:2	3:2:1	4:2:4	[4:2:1]	$3: 2: 1$	4:2:2
4:2:3	5:3:4	4:2:2	4:2:3	4:2:2	3:2:2	4:3:3	4:2	:3	4:2:2	4:3:3	4:2:2	3:2:1	5:2:3	[4:2:2]	$4: 2: 2$	4:2:2
4:2:3	5:3:4	4:2:2	4:2:3	4:2:2	3:2:2	4:2:4	4:3	:3	4:2:2	4:2:2	4:2:3	3:2:3	4:2:3	4:2:2	4:2:2	3:2:3
4:2:3	6:3:4	4:2:2	5:3:3	4:3:3	4:3:3	4:2:3	4:3	:4	-	-	-					
5:3:4	4:3:3	4:2:3	4:2:2	3:2:2	4:2:3	4:2:3	4:2	:3	4:2:4	4:2:2	4:2:3	3:2:3	5:2:3	4:3:2	4:2:2	4:2:3
6:3:4	4:2:3	4:3:3	5:2:2	4:3:3	4:2:3	4:2:3	4:2	:3	4:2:4	4:2:4	4:2:3	4:2:2	4:2:3	4:2:2	4:2:4	4:2:3
B (i)									G(h)							
3:2:1	4:2:1	4:2:1	3:2:1	4:2:1	3:2:1	3:2:2	4:2		3:2:1	2:2:1	4:2:1	2:2:1	2:2:1	2:2:1	2:2:1	2:2:1
3:2:1	4:2:1	4:2:1	4:2:1	4:2:1	3:2:1	4:2:2	3:2		4:2:20	4:2:1	4:2:1	2:2:1	4:2:1	2:2:1	4:2:2a	2:2:1
4:2:2	4:2:3	4:2:2	4:2:2	4:2:2	4:2:3	4:2:2	2:2		4:2:20	3:2:20	2:2:3	4:2:20	4:2:2a	3:2:2a	3:2:1	2:2:1
4:2:2	4:2:2	4:2:2	4:2:3	4:3:3	4:2:2	5:3:3	4:2		4:2:3	3:2:2a	2:2:3	2:2:2a	4:2:2a	4:2:2a	3:2:2a	2:2:2a
5:2:2	4:2:2	4:2:2	4:2:4	4:3:3	4:2:2	5:2:2	3:2	:4	4:2:3	3:2:3	4:2:3	4:2:3	4:2:3	4:2:20	4:2:3	4:2:2a
4:2:3	4:2:4	4:2:4	4:2:4	4:3:3	4:2:3	4:2:4	4:2		4:2:4	2:2:3	4:2:4	4:2:3	4:2:3	4:2:3	4:2:3	4:2:2a
4:2:4	4:2:4	4:2:4	4:2:4	4:2:4	4:2:3	4:2:4	4:2		4:2:4	4:2:3	4:2:4	5:2:4	4:2:3	4:2:3	3:2:3	3:2:3
4:2:4	4:2:3	4:2:4	4:2:4	4:2:4	4:2:3	4:2:4	4:2		4:2:4	4:2:3	4:3:4	4:3:4	5:3:3	4:2:3	3:2:4	4:2:3
4:2:4	4:2:3	4:2:4	4:2:4	4:2:4	4:2:3	4:3:3	4:2	:4	4:3:4	4:2:4	4:3:4	5:4:4	4:2:4	6:2:3	4:2:4	5:3:3
4:2:4	4:2:3	4:2:4	4:2:3	5:2:3	6:3:6	5:3:4	4:3	:3	4:3:4	4:2:4	4:2:4	5:4:4	4:3:4	5:2:2	4:2:4	5:3:4
									6:3:4	6:2:4	6:2:4	4:3:4	4:3:4	4:2:3	4:2:4	5:3:3
C (b)									5:3:4	4:3:4	4:2:3	4:3:4	5:3:4	5:2:3	4:2:4	6:3:3
2:2:1	4:2:3	3:2:1	2:2:1	2:2:1	2:2:2a	a 3:2:1	3.2		4:3:4	4:3:4	6:3:3	5:3:4	5:4:4	4:2:3	4:2:4	6:2:3
2:2:1	4:2:3	3:2:1	2:2:1	4:2:20	- 2:2:2a	a 3:2:20	- 3:2	:20	5:3:4	6:3:4	6:2:3	6:3:4	4:4:4	4:2:4	4:2:4	6:3:3
									7:4:4	6:2:4	5:3:5	4:2:3	4:4:4	4:3:4	5:2:4	4:2:4
									8:4:4	7:2:4	4:2:3	4:2:2	5:4:4	4:2:4	5:2:4	4:2:3
D (d)									6:4:4	7:4:4	5:5:3	4:4:4	5:3:4	4:2:3	4:2:3	4:3:4
0:1	0:1	0:1	0:1	0:1	0:1 0	0:1	0:1	1	6:4:4	8:4:4	4:4:4	4:3:3	5:2:3	4:2:3	4:3:3	4:3:4
2:2:1	2:2:1	2:2:1	2:2:1	2:2:1	2:2:1 2	2:2:1	2:2:1	42	6:4:4	7:4:3	4:3:4	6:2:3	5:2:3	4:2:3	4:2:3	5:4:4
4:2:2	4:2:2	4:2:2	4:2:2	4:2:2	4:2:2	4:2:2	4:2:2	108	4:2:3	6:4:3	6:4:3	4:2:4	6:3:4	4:3:3	4:3:4	4:2:3
4:2:2	4:2:3	4:2:2	4:2:2	4:2:2	4:2:3	4:2:3	4:2:3	126								
4:2:2	4:2:3	4:2:2	4:2:2	4:2:2	4:2:3	4:2:3	4:2:3	150	Table 1. Peristomial formulae for each of eigth octants of the studied sporophytes of Catoscopium. Formulae are shown with distanse $10 \mu \mathrm{~m}$ one from another, if otherwise is not specified [number at the right margin in D series].							
4:2:3	4:2:3	4:2:4	4:2:4	4:2:2	4:2:3	4:2:3	4:2:3	164								
4:2:3	4:2:3	4:2:4	4:2:4	4:2:2	4:2:3	4:2:3	4:2:3	188								
4:2:3	4:2:3	4:2:4	4:2:2	4:2:3	4:2:3	4:2:3	4:2:3	218								

to a strong peristomial reduction, likely similar to the example shown in Fig. 4G. Almost all anticlinal divisions are aligned in those cases.

In the proximal parts of the peristome, the colorpattern corresponding to 4:4:4 (cf. Fig. 5) appears to be sporadic in 4 octants (Fig. 8). This pattern however can be a result of at least two developmental pathways: (1) either it is a continuation of 4:2:4-opposite pattern by additional divisions in PPL (like e.g. in Splachnum, cf. Schwartz, 1994), or (2) develops from 4:2:3 in those parts of circumference where cells underwent additional divisions, being one of restrictions derived from the RGB performance method, with the peristome subdivision into 64 sectors. Having not a full resolution of the sequence of cell divisions, the 4:4:4 areas in Fig. 8 reveal an interesting aspect, showing that the 4:4:4 patterns are expressed in opposite sides of the capsule, being determined likely by the urn curvature. Note that
additional divisions in PPL make the current method unable to differentiate the principal structure of 4:4:4 based on aligned anticlinal cell walls and pattern formed due to additional divisions. This question has to be addressed specifically in each case where problems with its interpretation appear. In Catoscopium the 4:4:4 pattern is represented in Fig. 8 in hatched frames; however, a close up view demonstrates its variable nature, not similar to that of e.g. Splachnum.
3. The diplolepideous-alternate patterns appear in Catoscopium peristomes closer to the base (Figs. 8, 10). Their occurrence is partly affected by irregular displacements, thus it might be assumed as a noise that is caused by an inappropriateness of the method; however, at places it has much in common with the pattern observed in Bryum (Shaw, 1989a). Fig. 4F shows the early displacement of the IPL cells relative to anticlinal cell walls in PPL, including those four formed at the beginning of

Fig. 11. A-B, Podperaea krylovii, sections (20 and $50 \mu \mathrm{~m}$ from the upper point where peristomial layers become discernible), showing development of 4:2:4 (diplolepideous-alternate) pattern through the stage of 4:2:3. C-F, Catoscopium nigritum, selected parts of sections, showing typical transition from 4:2:2 offset (C) to 4:2:3 (E), and less common transition from 4:2:2 aligned (D) to 4:2:4 aligned (F).
sporophyte formation and forming its 'basic cross', of aligned quadrant at the earlier stages. In all cases where it has been studied, including Aulacomnium heterostichum (Blomquist \& Robertson, 1941), Bryum bicolor (Shaw et al., 1989a), and Podperaea krylovii (Fig. 10), the early stages of development are characterized by the numerous divisions in IPL, so its cells become much smaller than cells in PPL, and these active divisions and local growth are associated with displacements, which do not occur usually in diplolepideous-opposite
and haplolepideous peristomes. However, contrary to the diplolepideous-alternate mosses, in Catoscopium additional divisions involve not only IPL, but also PPL (resulting, as it was noted above, in retaining the overall 4:2:3 formula, as in the 'classical' variant, the 32:16:24).

Summing up, the haplolepideous peristomial formula, 4:2:3, should be accepted as basic for Catoscopium due to prevailing offset divisions at the transition from 2:2:1 to 4:2:2 in most studied capsules, and presence of
some cross section series almost totally composed of octants with 4:2:3, including one where a complete series of developmental stages is present, starting from the two-cell-layered amphithecium. However, deviations are numerous, and as it makes the structure less regular, it can be called a reduction, as commonly used in bryological literature.

Reduction of Catoscopium peristome involves at least two trends: additional divisions in all peristomial layers and aligned instead of offset divisions at the stage changing formula from 2:2:1 to 4:2:2.

Additional divisions in the IPL were found also in Ditrichum (Shaw et al., 1989b) and Glyphomitrium (Estébanez et al., 2006), showing a certain parallel with the diplolepideous-alternate pattern. An increase in PPL cell number is known in some diplolepideous-alternate groups, e.g., it is well known in Bryum angustirete and B. arcticum and correlates with (and is likely caused by) an adjoining of exo- and endostome. The fused structure may be considered as a reduction as it is associated with the loss of cilia, reducing hygroscopic ability which is well performed in Bryum species with complete, or perfect, peristomes.

A trend from unequal divisions in the IPL to equal ones occurs occasionally in some octants in developing peristomes of Catoscopium (Figs. 10, 11C-F). It seems that parallel changes occur in Ephemerium, Tetraplodon and Splachnum (Schwartz, 1994) and Dichelodontium (Magill, 1987): according to the molecular phylogenies these taxa do not belong to groups with diplolepideousopposite peristomes, but such peristomes are, however, present in these genera. In all cases this is correlated with overall sporophyte reduction (Ephemerum), or with considerable reduction of hygroscopic peristomial movements, especially strongly modified in Splachnum and Tetraplodon due to their unusual spore release by a slow pushing off by a specific false columella (Demidova \& Filin, 1994).

Coming back to questions asked in the beginning of the study, "is it possible to recognize the basic peristome formula in irregularly developed peristomes of Ca toscopium?", the answer appears to be more complicated than just yes or no. It comes out that the 4:2:3 formula occurs at the earlier stages of development in Catoscopium, but this pattern is not 100% specific for haplolepideous mosses. Diplolepideous-alternate peristomes pass through the stage of 4:2:3 (Fig. 11A-B), and, probably even more important is the presence of this pattern in Disphyscium (Shaw et al., 1987). Shaw et al. (1989b) challenged the idea that this stage is characteristic for the diplolepideous-alternate mosses, as has been noted for Aulacomnium by Blomquist \& Robertson (1941). According to the former authors this is no more than a very short transitional stage in the early development, as they found for the Bryum species (Shaw et al., 1988). Although this principally agrees with what
we found in Podperaea, the 4:2:3 stage in Podperaea is more or less invariably formed and gradually transits to the 4:2:4-alternate pattern (Fig. 11). The explanation for this difference may depend on the slightly less developed peristome in Podperaea compared to Bryum: the former has $(0-) 1(-2)$ cilia, instead of usually 2-4 in Bryum. In Podperaea, subsequent divisions result in shifting of anticlinal cell walls in between octants to the offset position, a characteristic of diplolepideousalternate mosses. In Catoscopium the 4:2:4-alternate pattern is also not rare, especially close to the middle and basal parts of teeth, although occasionally appearing in the distal part or developing peristome as well (Fig. 10).

Subsequent swelling of PPL cells is considered to be the most important advanced character of diplolepideousalternate peristome (Shaw et al., 1989b), differentiating it from the haplolepideous mosses with additional divisions in IPL. Middle stages of development might look more or less similar in Catoscopium and Podperaea (cf. Figs. 4 and 9), although further towards the peristome base, the swelling is more conspicuous, and more additional anticlinal divisions occur in the IPL.

This overall differentiation of basic peristome types poses a question of their classification: what is the crucial for that? Either later stages, as argued Shaw et al. (1989b), or the youngest one, at a level of transition from 2:2:1 to 4:2:2, suggested as the most important in the peristome analysis of the genus Timmia (Budke et al., 2007) where later stages comprise swelling (Murphy, 1988), obscuring the originally aligned cell arrangement.

Of course, it can be concluded that divergence in peristome development between the diplolepideous-opposite type (including Funaria-type, Timmia-type, etc.) and all other types happens earlier, when 2:2:1 develops to $4: 2: 2$, where IPL division can be either offset or aligned, whereas the divergence between haplolepideous and diplolepi-deous-alternate types becomes apparent at a slightly later stage of peristome development. This scenario nicely corresponds with the majority of phylogenetic trees (e.g. Newton et al., 2000; Cox et al., 2010). However the case of Diphyscium makes the situation more complicated: being basal in arthrodontous mosses, it has a very clear 4:2:3 stage, although later it is modified to strongly swelling pattern.

Taking into account the aforementioned observations, including the distribution of peristomial structures along the moss phylogeny (Figs. $12 \& 13$), the subordinate position of the 4:2:3-pattern as being characteristic for haplolepideous mosses can be challenged. The further parallel was drawn by Shaw et al. (1987) with Tetraphis, which also has an offset divisions rather than aligned ones at the transition from 2:2:1 to 4:2:2 (although later its developmental pattern changes). Accepting this point, the $4: 2: 4$ opposite pattern can be reconsidered as a re-

Fig. 12. The best RAxML likelihood tree obtained from the concatenated rps4 and nad5 sequences (data set 1), for the genera included in the peristome development studies (marked by color), supplemented with representatives of other families, not included in the morphological studies (those are without color marks). Posterior probabilities (>50) are shown below the branches while Bootstrap support (>50) is indicated above branches. 4:2:4-alternate pattern is attributed to Mittenia basing on Fig. 40 in Stone (1961). Pink color mark lineages to 4:2:4-opposite pattern, green to $4: 2: 3$ pattern, blue to $4: 2: 4$-alternate one. Families without arthrodontous peristomes are in black.
duced one. The obvious cases of reduction in Ephemerium, Tetraplodon, Splachnum and Dichelodontium were mentioned, but then the question is raised, if the 'true di-polepideous-opposite' mosses are so strongly different from them? Five orders belong now to this 'true diplolepideousopposite' group: Gigaspermales, Funariales, Disceliales, Encalyptales and Timmiales. Among them, Gigaspermales have no peristomes at all, Disceliales with a single species have a peristome which provides only slow and limited hygroscopic movements. Peristomes of Encalyptales are quite passive, because hygroscopic movements are not really needed under the cover of giant campanulate calyp-
tra, when many species apparently start spore release. Complex and hygroscopically active peristomes occur in two orders, Funariales and Timmiales, both with a single family. Moreover, in Funariaceae most taxa either lack, or have only poorly developed peristomes, so only within the one genus Funaria, albeit a widespread one, the diplolepi-deous-opposite peristome functions in spore release, and again only in about a half of species it is fully developed. Timmiaceae is the only family where all species have perfectly hygroscopic and xerocastique peristomes, but these species are few, less than ten in the world (Tropicos, http:/ /www.tropicos.org/namesearch.aspx).

Fig. 13. The inferred maximum likelihood topology (RAxML) obtained from a concatenated data set of 7 loci (data set 2) spanning 4 region of the chondrom (cobi420, nad2 with nad2i156, nad5 with nad5i753, nad5-nad4 intergenic spacer (IGS)) and three from the plastome ($r b c L, r p s 4, \operatorname{trnL}$ including a group I intron). Posterior probabilities (>50) are shown below the branches while Bootstrap support (>50) is indicated above branches. Pink color mark lineages to 4:2:4-opposite pattern, green to 4:2:3 pattern, blue to 4:2:4-alternate one. Families with nematodontous peristomes are in black, and lineages within arthrodontous mosses lacking peristomes in any families are in grey.

Further observations may confirm if the loss of unequal divisions at the transition from 2:2:1 to 4:2:2 is the main reason for peristome reduction among other moss groups. However the great role of asymmetric cell divisions in differentiation of plant body is well known (De Smet \& Beeckman, 2011), thus relaxation of this pattern may naturally lead to the simplification or at least building of less constructively perfect morphology.

The position of Catoscopium in moss phylogeny is especially interesting: if its peristome development is based of 4:2:3 pattern, it should be considered as the most ancient moss with a more or less developed peristome involving asymmetric cell divisions for tooth formation, as the still phylogenetically earlier case of Diphyscium (Figs. $12 \& 13$) sharing this pattern does not develop any teeth. An interesting fact is also that Catoscopium retains an ability to keep a largely 'unspecialized' type of peristome development, easily shifting to the diplolepideous-alternate and the diplolepideous-opposite patterns (Fig. 10), quite justifying its position near the cross-road of moss evolution. The question remains why a shift to the haplolepideous peristome type occurred, i.e. pronouncing the endostome instead of the exostome (as in Catoscopium), which resulted in a major radiation of mosses.

Acknowledgemens

We thank John Shaw for critical comments and a language check. We are grateful to Alfons Schäfer-Verwimp for sharing his specimen with us and to Markus Günther (TU Dresden) for SEM assistance. Special thanks are to Oleg Ivanov who suggested the idea of RGBcoding of peristome layers. Partial financial support by the Russian Foundation for Basic Reserches, 13-0401592 for MI and UN, by the Russian Science Foundation, 14-50-00029 for EI, and the German Research Foundation (DFG) for DQ (QU 153/3-1) is greatly appreciated.

Literature Cited

ALLEN, B.H. 1987. A systematic account of Pulchrinodus inflatus (Musci: Pterobryaceae), genus novum. - New Zealand Journal of Botany 25: 335-342.

BLOMQUIST, H.L. \& L.L. ROBERTSON. 1941. The development of the peristome in Aulacomnium heterostichum. - Bulletin of the Torrey Botanical Club 65: 569-584.

BORSCH, T. \& D. QUANDT. 2009. Mutational dynamics and phylogenetic utility of non-coding plastid DNA. - Plant Systematics and Evolution 282: 169-199.
BROTHERUS, V.F. 1924. Musci. - In: Engler, A. \& K. Prantl (eds.). Die Natürlichen Pflanzenfamilien. 2, 10. Berlin: Duncker and Humblot: 143-478.

BUCK, W. R. \& B. GOFFINET. 2000. Morphology and classification of mosses. - In: Shaw, A. J. \& B. Goffinet (eds.). Bryophyte biology. Cambridge University Press, Cambridge, UK: 71-123.
BUCK, W.R., B. GOFFINET \& A.J. SHAW. 2000. Testing morphological concepts of orders of pleurocarpous mosses (Bryophyta) using phylogenetic reconstructions based on trnL-trnF and rps4 sequences. Molecular Phylogenetics and Evolution 16: 180-198.

BUDKE, J.M., C.S. JONES \& B. GOFFINET. 2007. Development of the enigmatic peristome of Timmia megapolitana (Timmiaceae; Bryophyta). - American Journal of Botany 94(3): 460-467.
COX, C.J., B. GOFFINET, N.J. WICKETT, S.B. BOLES \& A.J. SHAW. 2010. Moss diversity: a molecular phylogenetic analysis of genera. Phytotaxa 9: 175-195.
COX, C. J., B. GOFFINET, A.J. SHAW \& S.B. BOLES. 2004. Phylogenetic relationships among the mosses based on heterogeneous Bayesian analysis of multiple genes from multiple genomic compartments. - Systematic Botany 29: 234-250.
CRUM, H.A. \& L.E. ANDERSON. 1981. Mosses of Eastern North America. Volume 1. - Columbia University Press, New York, 1-663.
DE SMET, I. \& T. BEECKMAN. 2011. Asymmetric cell division in land plants and algae: the driving force for differentiation. - Nature Reviews Molecular Cell Biology 12: 177-188. | doi:10.1038/nrm3064
DEMIDOVA, E.E. \& V.R. FILIN. 1994. False columella and spore release in Tetraplodon angustatus (Hedw.) Bruch et Schimp. in B. S. G. and T. mnioides (Hedw.) Bruch et Schimp. in B. S. G. (Musci: Splachnaceae). - Arctoa 3: 1-6.
EDWARDS, S.R. 1979. Taxonomic implications of cell patterns in haplolepideous moss peristomes. - In: Clarke, G.C.S. \& J. G. Duckett (eds.). Bryophyte systematics. Academic Press, London, UK.: 317-346.
EDWARDS, S.R. 1984. Homologies and inter-relations of moss peristomes. - In: Schuster, R.M. (ed.) New manual of bryology, vol. 2. Hattori Botanical Laboratory, Nichinan, Japan: 658-695.
ESTÉBANEZ, B., T. YAMAGUCHI \& H. DEGUCHI. 2006. The development of an unusual haplolepideous peristome type: Glyphomitrium humillimum. - Journal of the Hattori Botanical Laboratoty 100: 77-87.
EVANS, A.W. \& H.D. HOOKER, jr. 1913. Development of the peristome in Ceratodon purpureus. - Bulletin of the Torrey Botanical Club 40: 97-109.
FREY, W. \& M. STECH. 2009. Bryophyta (Musci, mosses). - In: Frey, W. (ed.). Syllabus of plant families A. Engler's Syllabus der Pflanzenfamilien. Part 3. Bryophytes and seedless vascular plants. 13th ed.. Gebr. Borntraeger Verlagsbuchhandlung, Stuttgart, Germany: 116257.

GOFFINET, B., W.R. BUCK \& A.J. SHAW. 2009. Morphology, anatomy, and classification of the Bryophyta. - In: Goffinet, B. \& A.J. Shaw (eds.). Bryophyte biology, 2nd edn. Cambridge: Cambridge University Press: 55-138.
GOFFINET, B., J. SHAW, L.E. ANDERSON \& B.D. MISHLER. 1999. Peristome development in mosses in relation to systematics and evolution. V. Diplolepideae: Orthotrichaceae. - Bryologist 102: 581-594.
GRIFFIN, D.I. \& W. R. BUCK. 1989. Taxonomic and phylogenetic studies on the Bartramiaceae. - Bryologist 92: 368-380.
HUTTUNEN, S., N. BELL, V.K BOBROVA, V. BUCHBENDER, W.R. BUCK, C.J COX, B. GOFFINET, L. HEDENAS, B.-C. HO, M.S IGNATOV, M. KRUG, O. KUZNETSOVA, I.A MILYUTINA, A. NEWTON, S. OLSSON, L. POKORNY, J.A. SHAW, M. STECH, A. TROITSKY, A. VANDERPOORTEN \& D. QUANDT. 2012. Disentangling knots of rapid evolution: origin and diversification of the moss order Hypnales. - Journal of Bryology 34: 187-211.
HUTTUNEN, S., S. OLSSON, V. BUCHBENDER, J. ENROTH, L. HEDENÄS \& D. QUANDT. Phylogeny-based comparative methods question the adaptive nature of sporophytic specialisations (in mosses). - PlosOne 7: e48268.

HYVÖNEN, J., S. KOSKINEN, G.L.S. MERRILL, T.A. HEDDERSON \& S. STENROOS. 2004. Phylogeny of the Polytrichales (Bryophyta) based on simultaneous analysis of molecular and morphological data. - Molecular Phylogenetics and Evolution 31: 915-928.

IGNATOV, M.S., O.M. AFONINA \& E.A. IGNATOVA (eds.) 2006. Checklist of mosses of East Europe and North Asia. - Arctoa 15: 1-130.
IGNATOV, M.S., A.A. GARDINER, V.K. BOBROVA, I.A. MILYUTINA, S. HUTTUNEN \& A.V. TROITSKY. 2007. On the relationships
of mosses of the order Hypnales, with special reference to taxa traditionally classified in the Leskeaceae. - In: Newton, A.E. \& R.S. Tangney (eds.). Pleurocarpous mosses: systematics and evolution. Systematic Association, Special Volume 71: 177-213.
IGNATOV, M.S. \& E.A. IGNATOVA. 2003. Moss flora of the Midddle European Russia. Vol. 1: Sphagnaceae - Hedwigiaceae. - Moscow: KMK Sc. Press Ltd.: 1-608.
INOUE, Y. \& H. TSUBOTA. 2014. On the systematic position of the genus Timmiella (Dicranidae, Bryopsida) and its allied genera, with the description of a new family Timmiellaceae. - Phytotaxa 181(3): 151162.

KELCHNER, S.A. 2000. The evolution of non-coding chloroplast DNA and its application in plant systematics. - Annals of the Missouri Botanical Garden 87: 482-498.
LIMPRICHT, K.G. 1895. Die Laubmoose Deutschlands, Oesterreichs und der Schweiz. 2 Abt. - Eduard Kummer, Leipzig.
MAGILL, R.E. 1987. On the endostomial nature of the Dichelodontium (Ptychomniaceae) peristome. - Memoirs of the New York Botanical Garden 45: 87-94.
MURPHY, S.A. 1988. Development of the peristome of Timmia megapolitana Hedw. - M.S. thesis, University of Iowa, Ames, Iowa, USA.
NEWTON, A.E., C.J. COX, J.G. DUCKETT, J.A. WHEELER, B. GOFFINET, T.A.J. HEDDERSON \& B.D. MISHLER. 2000. Evolution of the major moss lineages: phylogenetic analyses based on multiple gene sequences and morphology. - Bryologist 103: 187-211.
OLSSON, S., V. BUCHBENDER, J. ENROTH, L. HEDENÄS, S. HUTTUNEN \& D. QUANDT. 2009. Phylogenetic analyses reveal high levels of polyphyly among pleurocarpous lineages as well as novel clades. - Bryologist 112: 447-466.

PODPERA, J. 1954. Conspectus muscorum Europaeorum. - Prague. Chechoslovakian Academy, 697 pp.
QUANDT, D., N. BELL \& M. STECH. 2007. Unravelling the knot: the Pulchrinodaceae fam. nov. (Bryales). - Nova Hedwigia 131: 21-39.
QUANDT, D., K. MÜLLER \& S. HUTTUNEN. 2003. Characterisation of the chloroplast DNA psbT-H region and the influence of dyad symmetrical elements on phylogenetic reconstructions. - Plant Biology 5: 400-410.
RAMBAUT, A., M.A. SUCHARD, D. XIE \& A.J. DRUMMOND. 2014. Tracer v1.6. - Available from http://beast.bio.ed.ac.uk/Tracer.
RONQUIST, F., M. TESLENKO, P. VAN DER MARK, D.L. AYRES, A. DARLING, S. HÖHNA, B. LARGET, L. LIU, M.A. SUCHARD \& J.P. HUELSENBECK. 2012. MRBAYES 3.2: Efficient Bayesian phylogenetic inference and model selection across a large model space. Systematic Biology 61: 539-542.
REYNOLDS VAIZEY, J. 1888. On the anatomy and development of the sporogonium of the mosses. - Journal of the Linnean Sosiety 24: 262-285+PL.9-12.
SAITO, S. 1956. Studies on the development of the peristome in Musci II. On the peristome in Dicranum japonicum Mitt. - Botanical Magazine, Tokyo 69(812): 53-59.
SAITO, S. \& S. SHIMOZE. 1955. Studies on the development of the peristome in Musci I. On the peristome in Bartramia crispula Schimp. Botanical Magazine, Tokyo 69(812): 53-59.
SCHWARTZ, O.M. 1994. The development of the peristome-forming layers in the Funariaceae. - International Journal of Plant Science 155: 640-657.
SCHIMPER, W.P. 1860. Synopsis Muscorum Europeorum. - E. Schweizerbart, Stuttgart, 733 pp.
SHAW, J. 1985. The correlation between taxonomy and peristome structure in the Bryaceae. - Journal of the Hattori Botanical Laboratory 59: 79-100.

SHAW, J. \& B.H. ALLEN. 1985 [1986]. Anatomy and morphology of the peristome in Discelium nudum (Musci: Disceliaceae). - Bryologist $\mathbf{8 8}$: 263-267.
SHAW, A.J. \& L.E. ANDERSON. 1988. Peristome development in mosses in relation to systematics and evolution II. Tetraphis pellucida (Tetraphidaceae). - American Journal of Botany 75: 1019-1032.
SHAW, A.J., L.E. ANDERSON \& B.D. MISHLER. 1987. Peristome development in mosses in relation to systematics and evolution 1. Diphyscium foliosum (Diphysciaceae). - Memoirs of the New York Botanical Garden 45: 55-70.
SHAW, A.J., L.E. ANDERSON \& B.D. MISHLER. 1989a. Peristome development in mosses in relation to systematics and evolution III. Funaria hygrometrica, Bryum pseudocapillare, and B. bicolor. - Systematic Botany 14: 24-36.
SHAW, A.J., L.E. ANDERSON \& B.D. MISHLER. 1989b. Peristome development in mosses in relation to systematics and evolution IV. Haplolepideae: Ditrichaceae and Dicranaceae. - Bryologist 92: 314-323.
SHAW, A. J., C. J. COX, B. GOFFINET, W. R. BUCK \& S. B. BOLES. 2003. Phylogenetic evidence of a rapid radiation of pleurocarpous mosses (Bryophyta). - Evolution 57: 2226-2241.
SHAW, J. \& K. RENZAGLIA. 2004. Phylogeny and diversification of Bryophytes. - American Journal of Botany 91(10): 1557-1581.
SHAW, A.J. \& H. ROBINSON. 1984. On the development, evolution, and function of peristome in mosses. - Journal of the Hattori Botanical Laboratory 57: 319-335.
SHAW, A.J., P. SZÖVÉNYI \& B. SHAW. 2011. Bryophyte diversity and evolution: windows into the early evolution of land plants. - American Journal of Bototany 98(3): 352-369.
SHIMAMURA, M. \& H. DEGUCHI. 2008. Sporophyte anatomy of $O e-$ dipodium griffithianum (Oedipodiaceae). - In: Mohamed, H., B.B. Baki, A. Nasrulhaq-Boyce et al. (eds.). Bryology in the New Millennium. Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia: 319-325.
SNIDER, J.A. 1975a. A revision of the genus Archidium (Musci). - Journal of the Hattori Botanical Laboratory 39: 105-201.
SNIDER, J. A. 1975b. Sporophyte development in the genus Archidium. - Journal of the Hattori Botanical Laboratory 39: 85-104.

STAMATAKIS, A. 2014. RAxML Version 8: A tool for Phylogenetic Analysis and Post-Analysis of Large Phylogenies. - Bioinformatics 30: 1312-1313.
STÖVER, B.C. \& K.F. MÜLLER. 2010. TreeGraph 2: Combining and visualizing evidence from different phylogenetic analyses. - BMC Bioinformatics 11: 7.
STECH, M., S.F. McDANIEL, R. HERNÁNEZ-MAQUEDA, R.M. ROS, O. WERNER, J. MUŃOZ \& D. QUANDT. 2012. Phylogeny of haplolepideous mosses - chellenges and perspectives. - Journal of Bryology 34(3): 173-186.
STONE, I.G. 1961. The gametophore and sporophyte of Mittenia plumula (Mitt.) Lindb. - Australian Journal of Botany 9: 124-151.
TSUBOTA, H., E. DE LUNA, D. GONZÁLEZ, M.S. IGNATOV \& H. DEGUCHI. 2004. Molecular phylogenetic and ordinal relationships based on analyses of a lage-scale datd set of 600 rbcL sequences of mosses. - Hikobia 14: 149-170.
WAHRMUND, U., D. QUANDT \& V. KNOOP. 2010. The phylogeny of mosses - addressing open issues with a new mitochondrial locus: Group I intron cobi420. - Molecular Phylogenetics and Evolution 54: 417426.

WENDEROTH, H. 1931. Beiträge zur Kentnis des Sporophyten von Polytrichum juniperinum. Willdenow. - Planta 14: 244-385.

Appendix 1. Sequences used for a small taxon subset consisting only of genera used for peristome development studies supplemented with eperistomate Sphagnum and Takakia (data set 1).

Species	GenBank accessions		Reference for anatomy study
	nad5 with nad5i753	rps 4	
Sphagnum sericeum	AY309571	AY309717	
Takakia lepidozioides	AJ291553	AB299143	
Oedipodium griffithianum	AY312880	AF306968	Shimamura \& Deguchi, 2008
Polytrichum juniperinum	GU56958	EU927342	Reynolds Vaizey, 1888 (Polytrichum formosum) and Wenderoth, 1931 (P. juniperinum).
Buxbaumia aphylla	AY312872	AY137677	
Tetraphis pellucida	AJ224855	AY908021	Shaw \& Anderson, 1988
Diphyscium foliosum	AY312874	AF223034	Shaw et al., 1987
Aphanorrhegma serratum	AY908931	AF223047	Schwartz, 1994
Funaria hygrometrica	Z98959	JN088980	Shaw et al., 1989a
			Schwartz, 1994 (F. hygrometrica and F. flavicans)
Physcomitrium lorentzii	AY908933	AF223046	Schwartz, 1994 (P. pyriforme)
Discelium nudum	AY908956	AF223063	Shaw \& Allen, 1985
Timmia megapolitana	AY312890	AF478287	Budke et al., 2007
Ephemerum serratum	AY908848	AY908061	Schwartz, 1994
Archidium donnellii	AY908972	AF223054	Snider, 1975b (A. ochioense)
Ditrichum cylindricum	AJ291559	AY908125	Shaw et al., 1989b (D. lineare and D. pallidum)
Mittenia plumula	N.A.	AF306999	Stone, 1961
Trematodon longicollis	N.A.	AY908087	Shaw et al., 1989b
Catoscopium nigritum	AY908927	AF307001	present paper
Ceratodon purpureus	AY908862	AB848717	Evans \& Hooker, 1913
Dicranum scoparium ${ }^{1}$	AY908884	AF234158	Shaw et al., 1989b ${ }^{1}$
Glyphomitrium daviesii	AY908895	N.A.	Estébanez et al., 2006 (G. humillimum)
Tetraplodon mnioides	AY908376	AY499644	Schwartz, 1994
Splachnum ampullaceum	EU095308	AY499621	Schwartz, 1994
Bartramia halleriana	Z98961	AF265358	Saito \& Shimoze, 1955 (B. crispula)
Bryum bicolor	DQ640119	DQ294323	Shaw et al., 1989a
Bryum capillare	DQ640122	JF277331	Shaw et al., 1989a (B. pseudocapillare)
Podperaea krylowii	N.A.	KT388714	present paper
Dichelodontium nitidum	AY452347	AY449664	Magill, 1987
Schlotheimia torquata	AY618409	AY908005	Goffinet et al., 1999
Aulacomnium turgidum	AY312869	AF023809	Blomquist \& Robertson. 1941 (A. heterostichum)

${ }^{1}$ - similar anatomy has been found for D. condensatum and D. rhabdocarpum (Shaw et al., 1989b) and D. japonicum (Saito, 1956).
Appendix 2. Accession numbers for the sequences used to compile the bryophyte backbone data set (data set 2, adopted from Wahrmund et

Taxonomy	Species	cobi420	nad2 with nad2i156	nad5 with nad5i753	nad5- nad4 IGS	$r b c L$	rps4	trnL G1
Polytrichopsida: Polytrichaceae	Atrichum undulatum	FJ870696	AJ299527	AJ001229	EU095269	AY118236	AY137681	AF545002
	Pogonatum urnigerum	FJ870699	AJ299528	AJ291554	EU095272	AF478206	AF478258	GU569719
						P. perichaetiale	P. perichaetiale	
Tetraphidopsida: Tetraphidaceae	Tetraphis pellucida	FJ870700	AJ299529	AJ224855	EU095273	AF478203	AF306954	AF231908.
Bryopsida			Buxbaumiidae					
Buxbaumiales: Buxbaumiaceae	Buxbaumia aphylla	FJ870701	AJ299531	AJ291555	EU095274	AF478212	AF231897	AF478299
			Diphysciidae					
Diphysciales: Diphysciaceae	Diphyscium sessile	FJ870702	AJ299530	Z98972	EU095275	n.a.	n.a.	n.a.
	Diphyscium foliosum	n.a.	n.a.	AY312874	n.a.	AY312928	AF223034	AF229891
	Diphyscium fulvifolioum	n.a.	n.a.	JX241614	n.a.	AF478222	AF478266	AF478310
			Timmiidae					
Timmiales: Timmiaceae	Timmia austriaca	FJ870703	FJ870755	FJ870748	FJ870748	AJ275185	AF223035	DQ397165
	Timmia bavarica	FJ870704	AJ299532 AJ622820 Gigaspermidae		EU095276	DQ778619	AF222902	AF435351
Gigaspermales: Gigaspermaceae	Chamaebryum pottioides	FJ870706	FJ870757	AY908983	FJ870750	FJ870761	AF223051	AF229908
Gigaspermales: Gigaspermaceae	Gigaspermum repens	FJ870707	FJ870758 Funariidae	AY908974	FJ870751	FJ870762	AF231064	AF229906
Encalyptales: Encalyptaceae	Bryobrittonia longipes	FJ870709	EU095311	AY908790	EU095277	AJ275168	AF023778	AF023718
Encalyptales: Encalyptaceae	Encalypta streptocarpa	FJ870710	AJ299533	AJ291556	EU095278	AF478239	AF478282	AF478325
Funariales: Funariceae	Funaria hygrometrica	FJ870711	AJ299534	Z98959	EU095279	AF005513	AF023776	EU186538
Funariales: Funariceae	Physcomitrella patens	NC007945	AJ299535	Z98960	DQ098674	AP005672	NC005087	EU186539
Funariales: Funariceae	Physcomitrium pyriforme	FJ870712	EU095312	AY908933	EU095280	EU095319	AF223045	AF229902
				P. Iorentzii				
Disceliaceae	Discelium nudum	FJ870713	EU095313	AY908956	EU095281	EU095320	AF223063	AF229920
			Dicranidae					
Catoscopiales: Catoscopiaceae	Catoscopium nigritum	FJ870735	FJ870760	AY908927	FJ870753	FJ870764	AF307001	EU186545
Scouleriales: Drummondiaceae	Drummondia prorepens	FJ870714	LN828286	AY908926	EU095282	AF232697	AF306977	AF229895
				D. obtusifolia		D. obtusifolia		D. obtusifolia
Scouleriales: Scouleriaceae	Scouleria aquatica	n.a.	n.a.	AY312887	n.a.	AF226822	AF306984	AF023723
Bryoxiphiales: Bryoxiphialceae	Bryoxiphium norvegicum	n.a.	n.a.	AY908957	n.a.	AB194720	AY908092	AF229894
Grimmiales: Grimmiaceae	Grimmia (Coscinodon) cribrosus	FJ870715	EU095314	AY908918	EU095283	AB125575	AJ553978	DQ399642
				C. calyptratus				
Grimmiales: Grimmiaceae	Grimmia donniana	FJ870716	EU095315	AY908919	EU095284	AF231305	AF222900	AJ879718
				G. plagiopodia		G. pulvinata	G. pulvinata	
Grimmiales: Grimmiaceae	Racomitrium lanuginosum	FJ870717	AJ299542	AJ291561	EU095285	AB125582	AJ553982	EU246926
						R. japonicum		R. elongatum
Grimmiales: Seligeriaceae	Blindia acuta	FJ870718	EU095316	AY908928	EU095286	AF478232	AF478278	AF023721
						B. magellanica	B. magellanica	
Dicranales: Dicranaceae	Orthodicranum montanum	FJ870719	AJ299537	AJ291558	EU095287	AF231311	AF231288	AF129589

Appendix 2．（contined）．

O．fulvum	
DQ463123	AF135104
F．taxifolius	
AJ554004	AB848718
AF231279	AF231248
D．pallidum	D．pallidum
AF265359	LN828226
AJ554003	AF135083
AF480987	AF135112
P．ipallida	
AF481041	AF135108
T．muralis	T．muralis
AY908163	AF231173
T．anomala	T．crassinervis
AF480975	EU186544
C．fontinaloides	C．nigricans

AF023729

AY626014
AY009854
HE717062
 O．fulvum
DQ463104
F．taxifolius
EU095321
AF231302
D．pallidum
AY631206
AB124788
AB125592
P．intermedia
AF226823
T．obtusissima
AF478236
T．crassinervis
AF231079
C．mucronatus
EU095324

LN
0
0

DQ098675
EU095288
EU095290
EU095291
EU095294
EU095293

웅
No

AJ291564

AJ291570
AJ291574

\circ

N
N
N
さ
AJ299544
LIEG60กヨ
AJ299545
Bryidae

$\stackrel{1}{2}$
浆
边

AJ299549

AJ299558
AJ299563
AJ299560

\circ
$\stackrel{\circ}{\circ}$
N
N
2

No
$\stackrel{0}{\circ}$
N
N

FJ870731
$\stackrel{\text { N }}{\stackrel{N}{\text { N }}}$

$\stackrel{N}{\stackrel{N}{N}}$
FJ870738
FJ870739
FJ870740
FJ870741
FJ870742
FJ870743
FJ870744

Fissidens cristatus
snaindind иороделәј

Schistostega pennata
 Pottia truncata

FJ870727
FJ870726
FJ870728

Syntrichia（Totrula）Iatifolia Timmiella spec．

Cinclidotus riparius
Splachnum ampullaceum
Hedwigia ciliata
Rhacocarpuspur purascens Bartramia halleriana
Plagiopus oederi
Mnium hornum
Aulacomnium androgynum
Orthodontium lineare
Herzogiella seligeri
Fontinalis antipyretica
Hygrohypnum ochraceum
Scorpidium scorpioides
Pterogonium gracile Homalia trichomanoides Thamnobryum alopecurum
Ulota crispa
Splachnales：Splachnaceae
Orthotrichales：Orthotrichaceae
Hedwigiales：Hedwigiaceae
Hedwigiales：Rhacocarpaceae Bartramiales：Bartramiaceae Bartramiales：Bartramiaceae Bryales：Mniaceae
Rhizogoniales：Aulacomniaceae
Rhizogoniales：Orthodontiaceae Hypnales：Plagiotheciaceae
Hypnales：Fontinalaceae
Hypnales：Amblystegiaceae s．I．
Hypnales：Amblystegiaceae s．l．
Hypnales：Leucodontaceae
Hypnales：Neckeraceae
Hypnales：Neckeraceae

[^0]: ${ }^{1}$ - Tsitsin Main Botanical Garden of Russian Academy of Sciences, Botanicheskaya 4, Moscow 127276 Russia; e-mail: misha_ignatov@list.ru
 ${ }^{2}$ - Biological Faculty, Tver State University, Zhelyabova 33, Tver 170100 Russia; e-mail: ulayspirina@mail.ru
 ${ }^{3}$ - Biological Faculty, Moscow State University, Moscow 119991 Russia; e-mail: arctoa@list.ru
 ${ }^{4}$ - Nees-Institut für Biodiversitat der Pflanzen Rheinische, Friedrich-Wilhelms-Universitat, Meckenheimer Allee 170 D-53115 Bonn, Germany; e-mails: mkrug@uni-bonn.de, quandt@uni-bonn.de

