PHYLOGENETIC POSITION OF HOMALOTHECIUM LAEVISETUM AND RELATIONSHIP WITH THE GENUS PALAMOCLADIUM **ФИЛОГЕНЕТИЧЕСКОЕ ПОЛОЖЕНИЕ** *НОМАLOTHECIUM LAEVISETUM* И ЕГО РОДСТВО С РОДОМ РАLAMOCLADIUM SANNA HUTTUNEN¹, LARS HEDENÄS² & MICHAEL S. IGNATOV^{3,4} САННА ХУТТУНЕН¹, ЛАРС ХЕДЕНАС², МИХАИЛ С. ИГНАТОВ^{3,4}

Abstract

Molecular phylogenetic analysis found Homalothecium laevisetum, a widespread East Asian and Malesian species, to be unrelated to other species of this genus and invoked resurrection of the genus Oticodium. The latter genus was described for one species, O. celebesiae, which is considered to be a synonym of Homalothecium laevisetum. Oticodium belongs to the subfamily Eurhynchioideae, and most closely related to Eurhynchium s.str. The specialized peristome of the epiphytic Oticodium seems to have evolved more abruptly from that in terrestrial *Eurhynchium* than in other epiphytic lineages of Brachytheciaceae, such as Homalothecium and Palamocladium, where the transition to a specialized peristome is more gradual. The superficially similar genus Palamocladium is briefly commented on.

Резюме

Результаты молекулярно-филогенетического анализа свидетельствуют о том, что широко распространенный восточноазиатский и малезийский вид Homalothecium laevisetum не является родственным другим видам этого рода, что приводит к необходимости восстановления родового статуса Oticodium. Этот род был описан как монотипный, включающий O. celebesiae, который сейчас считается синонимом Homalothecium laevisetum. Oticodium относится к подсемейству Eurhynchioideae; он наиболее близок к роду Eurhynchium s.str. Специализированный перистом Oticodium, по-видимому, эволюционировал гораздо более быстро, чем перистомы других эпифитных линий в Brachytheciaceae, таких как Homalothecium и Palamocladium, в которых переход к специализированному типу перистома более постепенный. Дан также краткий комментарий в отношении внешне сходного рода Palamocladium.

KEYWORDS: Eurhynchioideae, Homalothecioideae, Oticodium, phylogeny, morpholodical synapomorphies, taxonomy

INTRODUCTION

Homalothecium Bruch, Schimp. & W. Gümbel was among the first genera of Brachytheciaceae established in "Bryologia Europaea" by Bruch et al. (1851). The species in the genus typically have triangular, plicate leaves with small alar cells, and a glossy appearance. Homalothecium was revised by Hofmann (1998) and molecular phylogeny by Huttunen et al. (2008) confirmed the delimitation of the genus and included nine species. Two additional species have been described after that (Hedenäs et al., 2009, 2014).

In revisions based on morphology, Homalothecium was often assumed to be closely related to Palamocladium Müll. Hal. (Lai et al., 1991; Hofmann, 1997, 1998). That genus was erected by Müller (1896), but its species were referred to the genus Pleuropus Griff., nom. illeg. (Griffith, 1842) until the middle of the 20th century. Later Pleuropus / Palamocladium species have also been included in Homalothecium by Grout (1928) and Ochyra & Pócs (1982), and Robinson (1962) even introduced Homalothecium subgen. Palamocladium (Müll. Hal.) H. Rob.

Homalothecium and Palamocladium share several morphological character states, such as dense terete foliage, narrowly triangular-lanceolate, deeply plicate leaves, relatively short laminal cells and a conspicuous alar cell region with small thick-walled quadrate alar cells, erect capsules in most species, and epiphytic and epilithic habitat preferences. However, molecular phylogenetic data (Ignatov & Huttunen, 2002; Huttunen & Ignatov, 2004) placed Homalothecium and Palamocladium in different

¹ – Herbarium, Biodiversity Unit, FI-20014 University of Turku, Finland. e-mail: shuttu@utu.fi

⁻ Swedish Museum of Natural History, Department of Cryptogamic Botany, Box 50007, SE-10405 Stockholm, Sweden

³ – Lomonosov Moscow State University, Biological Faculty, Geobotany Dept., Leninskie Gory Str. 1-12, Moscow 119234 Russia Россия, 119234, Москва, Ленинские Горы, д. 1 стр. 12, Московский государственный университет, биологический факультет, кафедра геоботаники. E-mail: misha_ignatov@list.ru ⁴ – Tsitsin Main Botanical Garden, Russian Academy of Sciences, Botanicheskaya Str., 4, Moscow 127276 Russia – Россия

¹²⁷²⁷⁶ Москва, Ботаническая 4, ГБС РАН.

subfamilies of the Brachytheciaceae: *Palamocladium* was resolved in the Eurhynchioideae, while *Homalothecium* was placed in the Homalothecioideae (Ignatov & Huttunen, 2002; Huttunen *et al.*, 2004).

In recent treatments the taxonomic position of Homalothecium laevisetum Sande Lac. has remained unsettled. The species was described by Sande Lacoste (1866) who placed it in the genus Homalothecium and compared it with H. sericeum (Hedw.) Schimp. Homalothecium laevisetum differs from other species in the genus by its temperate to tropical distribution, primarily in East Asia, and some morphological characters, such as a perfectly smooth seta, a hairy calyptra, and a reduced endostome (Hofmann, 1998). The species is morphologically variable and in a taxonomic revision of the East Asian Brachytheciaceae by Takaki (1955) and subsequent treatments in Japanese (Noguchi, 1991) and Chinese (Wang, 2008) moss floras two species were accepted, H. laevisetum and H. leucodonticaule (Müll. Hal.) Broth. In addition one more species, H. celebesiae (Müll. Hal.) Broth. has often been recognized in tropical Asia in Indonesia and Papua New Guinea (Brotherus, 1925; Enroth, 1993). However, in her revision of the genus Homalothecium, Hofmann (1998) concluded that the variation in Asian plants is so wide that no more than one species can be accepted, thus she synonymized both H. celebesiae and H. leucodonticaule with H. laevisetum.

In the first phylogenetic analyses *H. laevisetum* was resolved within the genus *Homalothecium* (Huttunen & Ignatov, 2004). However, in a molecular systematic study of *Homalothecium* (Huttunen *et al.*, 2008) the species appeared in the same subfamily as *Palamocladium*, which was revealed to be due to an erroneous ITS2 sequence (GenBank accession AF403616.1; now replaced with correct sequence data AF403616.2) in the first molecular systematic study. Thus far, taxonomic changes resulting from this new generic position of *H. laevisetum* have not been effected. In the present paper we aim to confirm the phylogenetic relationships of the species using both molecular and morphological data and to resolve the taxonomic position of the species.

MATERIAL AND METHODS

Taxon sampling included 53 accessions that belong to 37 species from the Brachytheciaceae subfamilies Brachythecioideae, Homalothecioideae, Helicodontioideae and Eurhynchioideae (Table 1; Ignatov & Huttunen, 2002). Earlier phylogenetic analysis of the Brachytheciaceae guided the taxon selection (Huttunen & Ignatov, 2004; Huttunen *et al.*, 2008). We aimed to include the closest relatives of *Homalothecium laevisetum* and taxa that were suggested to be closely related to it in earlier classifications. To confirm the phylogenetic relationships between *Palamocladium* and *H. laevisetum* and to test the monophyly of the morphologically diverse *Palamocladium leskeoides* (Hook.) E. Britton and *H. laevisetum*, we included several accession of these taxa, with different morphological character state combinations and from different parts of the world.

A morphological data matrix was compiled for 76 characters using a morphological database by L. Hedenäs. The coding for each species is based on at least three herbarium specimens, mainly from S. The data matrix and descriptions of characters and their states are given in Appendix 1 (Supplementary material 1). Fifteen characters were continuous (characters 0-14 in Appendix 1) and 61 categorical variables (characters 15-75 in Appendix 1).

The molecular data consisted of five DNA sequence regions: four plastid regions, *rpl*16, *atp*B-*rbc*L, *trn*D-T and *trn*L-F, and a nuclear, ITS1-5.8S-ITS2. Laboratory work was mainly done in the Laboratory of Molecular Systematics, Swedish Museum of Natural History. Laboratory protocols and information about PCR primers are given in Huttunen & Ignatov (2010) and Huttunen *et al.* (2008).

Phylogenetic analyses. DNA sequence data were edited and aligned manually with PhyDE® v0.9971 (Müller *et al.*, 2005). Inversion events were included in the phylogenetic analyses by coding presence of inversion events as a binary data matrix. Due to possible phylogenetic information in substitution events in the inversion regions, inverted fragments were included in the analyses in the reverse complement form (Quandt *et al.*, 2003). Information in the indel events was also included in phylogenetic analyses as a binary matrix generated using simple indel coding (Simmons & Ochoterena, 2000) in the program SeqState (Müller, 2005).

Phylogenetic analyses were performed for two data sets. First, a molecular data set with 53 terminals was analyzed to test the species delimitation within *Palamocladium* and *Homalothecium laevisetum*. Phylogenetic analyses for 53-terminal data set were run with two optimality criteria: parsimony (MP) as implemented in the program TNT (Goloboff *et al.*, 2008), and maximum likelihood (ML), using the program RAxML (Stamatakis, 2006; Stamatakis *et al.*, 2008). With both methods analyses were performed both with and without the information in the indel events (Fig. 1).

The second data set comprised combined molecular and morphological data with 35 terminals, one accession per species (Fig. 2). Only parsimony analysis was performed with TNT which is able to handle continuous characters in combination with other types (DNA and categorical) of data.

All TNT analyses were run using the default setting in a new technology search (NTS) except that alignment gaps in DNA sequence data were always treated as missing data and the search was terminated after a minimum length tree was found five times. Bootstrap support (BS) for clades was calculated using 1000 bootstrap replications. Trees for bootstrapping were obtained from analysis similar to the original NTS for the most parsimonious tree. RAxML analysis with the 53-terminal data set were run in CIPRES Science Gateway (Miller *et al.*, 2010). DNA sequence data was divided in analysis into five partitions following DNA sequence regions, *rpl16*, *atpBrbcL*, *trnD*-T, *trnL*-F, and ITS1-5.8S-ITS2. We used rapid bootstrap analysis including a search for the tree with the best ML score (-fa). The bootstrapping step included 1000 iterations. The GTRgamma model was used for all DNA sequence partitions and the Lewis model with correction for ascertainment bias was applied for the binary coded indel data matrix.

Ancestral state reconstruction and synapomorphies for major clades. Ancestral character state reconstruction for morphological characters and search for synapomorphic character states were done with TNT using topology from the analysis of the 35-terminal data set (Fig. 2). In addition to morphological characters, information on habitat (character 76; Appendix 1) was compiled and ancestral character state reconstructed to show as background information for some morphological character state changes (Fig. 2b)

RESULTS

Molecular data

The aligned length of five sequenced regions was 3370 positions including 853 bp from ITS1-5.8S-ITS2 region, 700 bp from *rpl*16, 632 bp from *atp*B-*rbc*L, 745 bp from trnD-T, and 440 bp from trnL-F. In the trnD-T 47 bp were excluded from phylogenetic analysis including a 20 bp long poly-T repeat at the end of the trnE-Y spacer (see Shaw et al., 2005; Huttunen & Ignatov, 2010) that hampered sequencing over the region. Additionally, a 6 bp long poly-T repeat and 21 bp region covering an inversion were excluded. In the ITS1-5.8S-ITS2 region 44 bp were excluded due to ambiguities in the alignment (40 bp) or because of poly-C repeat (4 bp). In plastid regions a 3 bp long poly-A repeat in rpl16, a 6 bp inversion region in the *trn*L-F spacer, and a 3 bp long poly-A repeat and a 4 bp long poly-T repeat in *atpB-rbcL* region were also excluded from all analyses. The total length of the alignment that was used in the phylogenetic analyses was thus 3264 bp including 626 positions from *atpB-rbcL*, 698 positions for trnD-T, 434 positions for trnL-F, 697 positions for rpl16, and 809 positions for the ITS1-5.8S-ITS2 region. In rpl16 15.6 % of the positions were variable and 8.0 % parsimony informative (PI), while in other regions these numbers were 15.2 % and 7.3 % for trnD-T, 10.4 % and 4.6 % for trnL-F, 11.2 % and 5.0 % for atpB-rbcL, and 22.3 % and 12.0 % for ITS1-5.8S-ITS2. Simple indel coding resulted in a data matrix with 240 characters, of which 37 characters were derived from rpl16, 31 from trnD-T, 11 from trnL-F, 17 bp from atpBrbcL, and 144 from ITS1-5.8S-ITS2.

Phylogenetic relationships

Strict consensus topologies from parsimony analyses of the 53-terminal data set with and without indel data as well as topologies of best scoring ML trees are very similar with only minor differences in branches lacking significant support. With both optimality criteria some nodes mainly within a *Plasteurhynchium – Palamocla-dium* clade and in *Homalothecium* are better resolved or have higher support in analyses including indel data (Fig. 1). The parsimony analysis with indel coding yielded 27 shortest trees with a length of 1235 steps. The analysis excluding indel coding resulted in 34 shortest trees with 861 steps.

Both analysis methods and all datasets suggested that all three subfamilies are monophyletic (Eurhynchioideae, maximum BS support both with MP and ML; Helicodontioideae, BS MP without/with indel data 99/99, ML without/with indel data 100/100 [first dataset/second dataset values]; Homalothecioideae, no significant support), as well as all included genera. The position of Scleropodium obtusifolium (Mitt.) Kindb., that has tentatively been included in the subfamily Brachythecioideae (Ignatov & Huttunen, 2002), is in all analyses resolved as sister to a Eurhynchioideae + Helicodontioideae clade (BS: MP 84/52, ML 87/93). Within the Eurhynchioideae, generic relationships remain mostly unresolved, but Homalothecium laevisetum is resolved as sister to Eurhynchium Schimp. with high support (BS: MP 96/98, ML 98/ 99). A well-supported Palamocladium (BS: MP 84/96, ML 92/98) is found together with a monophyletic Plasteurhynchium M. Fleisch. ex Broth. which lacks significant support within a well-supported clade (BS: MP 84/89, ML 81/91). The Homalothecioideae includes a monophyletic Brachytheciastrum Ignatov & Huttunen (BS: MP 98/98, ML 99/100) and a Homalothecium clade (BS: MP 97/94, ML 100/100) that includes all Homalothecium species except H. laevisetum and H. arenarium (Lesq.) E. Lawton. The position of H. arenarium remains unsupported in all analyses based only on molecular data, and outside both the Homalothecioideae and the Eurhynchioideae + Helicodontioideae clade.

Parsimony analysis of the 35-terminal data set including morphological data and indel data resulted in one most parsimonious tree with a length of 1800.82^{1} steps (Fig. 2). Support for most clades is lower than in the analysis based on the 53-terminal data set. Subfamilies Eurhynchioideae (BS 100) and Helicodontioideae (BS 100) are well supported, while in Homalothecioideae the only well-supported clade is Brachytheciastrum (BS 100). In the Eurhynchioideae, clades with high or moderate support include Eurhynchium (BS 81), Palamocladium (BS 94) and Scorpiurium Schimp. (BS 100). A close relationship of Plasteurhynchium and Palamocladium also gets significant support (BS 85). Relationships at the genus level are similar to the 53-terminal data set (Fig. 1). Homalothecium arenarium is, however, resolved within Homalothecium s. str. as sister to the rest of this genus, though without significant support.

¹ – tree length in TNT may be non-integer when continuous characters are analyzed.

Ancestral state reconstruction and synapomorphies for major clades

Character states shared by *Homalothecium laevisetum* and the *Palamocladium* clade include only one sporophytic character, presence of reduced exostome PPL ridges. Analogous state changes in this character are concentrated in clades with epiphytic species (Fig. 2a).

The number of synapomophic morphological character states for the major clades is low. Ancestral state reconstruction resolved a smooth seta (Fig. 2b) as a synapomorphy for the subfamily Eurhynchioideae and quadrate, rhombic or short rectangular alar cells (Fig. 2b) for the *Plasteurhynchium – Palamocladium* clade.

DISCUSSION

Our phylogeny resolves *Palamocladium* sister to a monophyletic *Plasteurhynchium*, while *Homalothecium laevisetum* is sister to a clade with *Eurhynchium angustirete* and *E. striatum* (i.e. *Eurhynchium* s. str, see Ignatov & Huttunen, 2002). The two clades, the *Plasteurhynchium – Palamocladium* clade and the *Eurhynchium – Homalothecium laevisetum* clade, share some similar trends in ecological, geographical and morphologi-

Figure 2. The single most parsimonious tree from analysis of combined molecular and morphological data. Bootstrap support for nodes with > 50 % support is presented below the branches. a) Ancestral character state reconstruction for preference of epiphytic habitats (red branches) and character state changes for a character state (exostome PPL ridges (0) normal, well developed or (1) reduced) that are shared by the *Eurhynchium – H. laevisetum* clade and the *Plasteurrhynchium – Palamocladium* clade. b) Morphological synapomorphies of the Eurhynchioideae (seta roughness (0) smooth or (1) rough) and the *Palamocladium – Plasteurhynchium* clade (alar cells appearance (0) rectangular, elongate, or linear; (1) quadrate, rhombic, or short rectangular) with their character state changes along the branches.

Fig. 3. Habits of *Oticodium laevisetum*, from Kuril Islands (A), *Homalothecium sericeum*, Caucasus (B), *Eurhynchium striatum*, Caucasus (C) and *Palamocladium euchloron*, Caucasus (D).

cal evolution: the cool temperate genera *Plasteurhynchium* and *Eurhynchium*, with unspecialized morphology and growing on soil, rock and tree bases, are sister to the warm temperate to tropical taxa *Palamocladium* and *Homalothecium laevisetum*, respectively, which are both morphologically specialized epiphytes (Fig. 3). The distribution area of *Eurhynchium* concentrates to the western part of temperate Eurasia with only a few occurrences in the east where it is sympatric with the warm temperate to tropical *H. laevisetum* (Fig. 7). A similar pattern exists in the *Plasteurhynchium* – *Palamocladium* clade although the total distribution of the warm temperate to tropical *Palamocladium* species is much wider and pantropical (Hofmann, 1997).

Like at the family level in the Brachytheciaceae, epiphytism has evolved independently in several lineages within the subfamily Eurhynchioideae and in *Homalothecium* (Fig. 2a). The epiphytic *Palamocladium* and *H. laevisetum*, as well as epiphytic *Homalothecium* lineages, including *H. nuttalii*, *H. aeneum* and a *Homalothecium* crown clade with *H. fulgescens*, *H. nevadense*, *H. philippeanum* and *H. sericeum*, have several sporophytic characters such as reduced exostome, endostomial cilia that are reduced or absent, and orthotropous capsules that are more frequently present in epiphytic species and which evolution is most likely associated with epiphytic habitats (Hedenäs, 2012, Huttunen *et al.*, 2004, 2012). However, despite shared overall habitus of species, *Palamocladium* and *H. laevisetum* share only one character state, presence of a reduced exostome ridges in the primary peristomial layer (PPL) (Fig. 2a, 4). Height of projecting trabecular varies even in species with reduced PPL, the most extreme cases occurring in epiphytic *Homalothecium* s.str. species. Reduced peristomes in general may show rather different character combinations in different lineages in Brachytheciaceae.

The repeated evolution of several character states makes it difficult to find morphological synapomorphies in many pleurocarpous taxa. According to our data, the only morphological synapomorphy for Eurhynchioideae is the smooth seta (Fig. 2b). The smooth seta in *Palamocladium* and *Homalothecium laevisetum* thus supports placement in the Eurhynchioideae, contrasting with the rough setae in most species of the Homalothecioideae, where only in *Homalothecium philippeanum* setae are smooth. The *Plasteurhynchium – Palamocladium* clade

rugose surfaces; G, I: side view of teeth, showing difference in ventral trabeculae (=PPL ridges), arrowed; H: ventral surface of endostome membrane, showing lack of segments and ciliae. Scale bars: $100 \,\mu\text{m}$ for A–C, $20 \,\mu\text{m}$ for D–I.

Fig. 5. Peristomes of *Palamocladium euchloron* (A-B, D-E, G-H, J-K; from Russia, Caucasus, MHA 9038527) and *Homalothecium philippeanum* (C, F, I, L; Russia, Caucasus, MHA9026760). Photos under stereomicroscope (A, dry, B–C, wet) and SEM (D–L); A–F: general views; G–H: side view, showing smooth ventral trabeculae and variously ornamented outer surface of distal part of teeth; I: exostome teeth in the middle, showing papillose distal part and smooth surface below; J: proximal part of tooth from outside, the surface smooth to rugose; K: proximal part of tooth from inside, showing densely arranged ventral trabeculae and wide membranaceous marginal zone; L: proximal part of tooth from outside, the surface smooth. Scale bars: 10 µm for A–F, 20 µm for G–L.

is also supported by a single synapomorphy, the rectangular, quadrate, or rhombic alar cells, while no synapomorhic morphological state was found for the *Eurhynch*ium - H. *laevisetum* clade. In the original description of the subfamily Eurhynchioideae, the group was described as large plants with pale green to yellowishgreen color and a characteristic, whitish color and silky gloss, cf. Fig. 3 (Ignatov & Huttunen, 2002). Axillary hairs are often long and their upper cells are more strongly colored than the basal cells. The sexual condition in the Eurhynchioideae can be either autoicous (e.g. *Rhynchostegium*) or dioicous, but, similar to the Homalothecioideae, in the *H. laevisetum – Eurhynchium* and *Palamocladium – Plasteurhynchium* clades, all species are at least facultatively phyllodioicous. The seta is always smooth, and the operculum has most often a sharply delimited beak. The peristome is usually perfect, but some epiphytic species in *Rhynchostegium* s. 1. (*Eri*-

Fig. 7. Leaf bases of A–B: *Oticodium laevisetum* (Papua New Gunia, Streimann 23080, MHA 9054435), C: *Oticodium laevisetum* (Russia, MHA 9036174), D: *Eurhynchium angustirete* (Russia, MHA 9004199), E: *Palamocladium euchloron* (Russia, Caucasus, MHA 9038527); F: *Palamocladium leskeoides* (China, Sichuan, MHA 9051234); G: *Homalothecium philippeanum* (Russia, Caucasus, MHA 9026760) Scale bars: 100 μm for all.

odon, Eurhynchiella) and Palamocladium have a rather strongly modified peristome structure. In the molecular data, the Eurhynchium – H. laevisetum clade shares a 19 bp long insertion in the trnY-D spacer of the trnD-T region.

Despite the large morphological variation within *Palamocladium leskeoides*, the species appears monophyletic but lacks significant support and includes the Hawaiian endemic *P. wilkesianum*. The position of *P. wilkesianum* should not be surprising; according to Hoffmann (1997), *P. leskeoides* and *P. wilkesianum* cannot be distinguished from each other with certainty based on gametophytic characters. Sporophytic characters differentiating them include lack of cross-striolation at the base

of the exostome teeth and 3–5 rows of rectangular exothecial cells below the capsule mouth in *P. wilkesianum*, contrasting with cross-striolate bases of exostome teeth and only 2–3 rows of rectangular exothecial cells in *P. leskeoides* (Hoffman, 1997). Branch lengths within the *P. leskeoides* clade are extremely short, and other methods than DNA sequence data are needed to study whether *P. wilkesianum* and taxa that have earlier been distinguished within the *P. leskeoides*, should be recognized at the species level. In early treatments of *P. leskeoides* s.l., the species delimitations followed geographical distributions. The taxon was thus split into the East Asiatic *P. nilgheriense*, the African *P. sericeum* and the American *P. leskeoides* s.str. The present results agree to a cer-

Fig. 7. Distribution of *Oticodium* (red dots). Brown shading indicates *Homalothecium* species, and green one – *Palamocladium* species. Expanded from Hofmann (1997, 1998), with addition from Wang (2008), and database of moss Flora of Russia (http://arctoa.ru/Flora/basa.php).

tain extent with these geographic patterns (Fig. 1), although with low support for both the (1) African *P. leskeoides*, and (2) African + Asian *P. leskeoides* + *P. wilkesianum* clades. This lends support to Hofmann's (1997) synonymization of *P. nilgheriense* and *P. sericeum* with *P. leskeoides*.

Homalothecium laevisetum differs from other Homalothecium species by its strongly modified peristome with high dorsal trabeculae, endostome almost lacking not only ciliae but also segments (cf. Figs. 4-5), a smooth seta, hairy calyptra, and larger area of more homogeneous cells across the whole leaf base (Fig. 6). The plants lack the golden green color that is typical for other Homalothecium species (Fig. 3). The distribution of the eleven species in Homalothecium s.str. covers western parts of both the Palearctic (non-tropical Eurasia and North Africa) and North America (Fig. 7) while the distribution of H. laevisetum is restricted to the eastern parts of subtropical and tropical Asia. The only area where Homalothecium occurs in an eastern part of continent is Newfoundland, with populations of Homalothecium sericeum that are putatively introduced from Europe (Ignatov, 2014). On the other hand, amphi-Atlantic distributions occur in a number of other bryophyte taxa (Schuster, 1983; Hedenäs, 2008), suggesting that such distributions have in most cases natural explanations. Based on the position of the species in the molecular analyses, as well as morphological and biogeographical differences, we suggest to transfer Homalothecium laevisetum to another genus, Oticodium (Müll. Hall.) Kindb. (see below).

TAXONOMY

Genus Oticodium (Müll. Hall.) Kindb., Enum. Bryin. Exot. 27. 1888.

Hypnum sect. *Oticodium* Müll. Hal., Ber. Thätigk. St. Gallischen Naturwiss. Ges., 1876–77: 303. 1978.

Type: *Hypnum celebesiae* Müll. Hal. = *Oticodium celebesiae* (Müll. Hal.) Kindb.

Oticodium laevisetum (Sande Lac.) comb. nov. Basionym: *Homalothecium laevisetum* Sande Lac. in Miquel, Annales Musei Botanici Lugduno-Batavi 2: 298. pl. 9. 1866. Type: Japonia, leg. Textor (Lectotype in L).

Hypnum celebesiae Müll. Hall., Linnea 39:469. 1875 (Lectotype in L!, selected in Hofmann, 1998).

Other species included: none.

In early treatments *Homalothecium celebesiae* and *H. laevisetum* have been distinguished from each other based on thicker and distinctly porose cell walls at the base of the leaf (Piippo, 1987; Enroth, 1993; Hofmann, 1998; Fig. 6). However, Hofmann (1998) transferred the name *H. celebesiae* under synonymy of *H. laevisetum* because although these characters show a wide variation and the differences in between the specimens do not allow distinguishing the two taxa.

Unfortunately, we were unable to find fresh material of typical *H. celebesiae* and could not test phylogenetic relationships of the two morphotypes. As morphologically diverse samples of populations from different parts of the distribution area of *H. laevisetum* form a monophyletic unit (Fig. 1), we feel that using the genus name *Oticodium* for this taxon is still safe.

ACKNOWLEDGEMENTS

We thank H. Akiyama for helpful suggestions on the manustript. This research was supported by a Marie Curie Intra-European Fellowship (MEIF-CT-2005-009452) within the 6th European Community Framework Program a Marie Curie Reintegration Grant (PERG03-GA-2008-230953) within the 7th European Community Framework Program and a post-doctoral researcher grant from the Academy of Finland (project no. 121373) for SH. Work of MS was supported by RSF 18-14-00121.

LITERATURE CITED

- BROTHERUS, V.F. 1925. Musci. In: Engler, A. & Prantl, K. (eds.), Die Natürlichen Pflanzenfamilien, ed. 2, W. Engelmann, Leipzig, 11: 1–522.
- BRUCH, P.H., W. PH. SCHIMPER & TH. GÜMBEL. 1851. Bryologia Europaea seu genera muscorum Europaeorum monographice iilustrata. 5. – *Stutgartiae, Sumptibus Librariae E. Schweizerbart.*
- ENROTH, J. 1993. Bryophyte flora of the Huon Peninsula, Papua New Guinea. LII. *Homalothecium* (Brachytheciaceae, Musci). – Acta Botanica Fennica 148: 1–4.

- GRIFFITH, W. 1842. Muscologia itineris Assamici [I]; or, a description of mosses, collected during the journey of the Assam Deputation, in the years 1835 and 1836. – *Calcutta Journal of Natural History* 2: 465–514.
- GROUT, A.J. 1928. Moss flora of North America North of Mexico. Vol. III. Part I. *New York, published by author.*
- GOLOBOFF, P.A., J.S. FARRIS, & K.C. NIXON. 2008. TNT, a free program for phylogenetic analysis. – *Cladistics* 24: 774–786.
- HEDENÄS, L. 2008. Molecular variation and speciation in Antitrichia curtipendula s.l. (Leucodontaceae, Bryophyta). – Botanical Journal of Linnean Society 156: 341–354.
- HEDENÄS, L. 2012. Morphological and anatomical features associated with epiphytism among the pleurocarpous mosses – one basis for further research on adaptations and their evolution. – *Journal of Bryology* 34: 79–100.
- HEDENÄS, L., S. HUTTUNEN, J.R. SHEVOCK & D.H. NORRIS. 2009. *Homalothecium californicum* (Brachytheciaceae), a new endemic species to the California Floristic Province, Pacific coast of North America. – *Bryologist* 112: 593–604.
- HEDENÄS, L., A. DÉSAMORÉ, B. LAENEN, B. PAPP, D. QUANDT, J.M. GONZÁLEZ-MANCEBO, J. PATIŃO, A. VANDERPOORTEN & M. STECH. 2014. Three species for the price of one within the moss *Homalothecium sericeum* s.1. – *Taxon* 63(2): 249–257.
- HOFMANN, H. 1997. A monograph of the genus Palamocladium (Brachytheciaceae, Musci). – Lindbergia 22: 3–20.
- HOFMANN, H. 1998. A monograph of the genus *Homalothecium* (Brachytheciaceae, Musci), -*Lindbergia* 23: 119–159.
- HUTTUNEN, S. & M.S. IGNATOV. 2004. Phylogeny of Brachytheciaceae (Bryophyta) based on morphology and sequence level data. – *Cladistics* 20: 151–183.
- HUTTUNEN, S. & M.S. IGNATOV. 2010. Evolution and taxonomy of aquatic species in the genus *Rhynchostegium* (Brachytheciaceae, Bryophyta). – *Taxon* 59: 791–808.
- HUTTUNEN, S., M.S. IGNATOV, K. MÜLLER, & D. QUANDT. 2004. Phylogeny and evolution of epiphytism in the three moss families Meteoriaceae, Brachytheciaceae, and Lembophyllaceae. – In: Molecular systematics of bryophytes, pp. 328–355. Goffinet, B., Hollowell, V. C., and Magill, R. E., Eds. St. Louis: Missouri Botanical Garden Press.
- HUTTUNEN, S., S. OLSSON, V. BUCHBENDER, J. ENROTH, L. HEDENÄS & D. QUANDT. 2012. Phylogeny-based comparative methods question the adaptive nature of sporophytic specializations in mosses. – *PLos One* 7(10): e48268.
- HUTTUNEN, S., L. HEDENÄS, M.S. IGNATOV, N. DEVOS & A. VANDERPOORTEN. 2008. Origin and evolution of the Northern Hemisphere disjunctions in the moss genus *Homalothecium* (Brachytheciaceae). – *American Journal of Botany* **95**(6): 720–730.
- IGNATOV, M.S. & S. HUTTUNEN. 2002. Brachytheciaceae (Bryophyta) – a family of sibling genera. – *Arctoa* 11: 245–296.
- IGNATOV, M.S. 2014: Homalothecium. In: Flora of North America Editorial Committee, eds., Flora of North America North of Mexico. Vol. 28, pp. 439-446 New York and Oxford.

- LAI, M.-J., T. KOPONEN & D.H. NORRIS. 1991. Bryophyte flora of the Huon Peninsula, Papua New Guinea. XLIV. *Palamocladium* (Brachytheciaceae, Musci). – *Acta Botanica Fennica* 149: 71–76.
- MILLER, M.A., W. PFEIFFER, & T. SCHWARTZ. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. – *Proceedings of the Gateway Computing Environments Workshop* (GCE), New Orleans, LA.
- MÜLLER, C. 1896. Bryologia Hawaiica. Flora 82: 434-479.
- MÜLLER, K. 2005. Incorporating information from length-mutational events into phylogenetic analyses. – *Molecular Phylogenetics and Evolution* 38: 667–676.
- MÜLLER, K., D. QUANDT, J. MÜLLER & C. NEINHUIS. 2005. Phy-DE ® 0.983: Phylogenetic Data Editor. – Available at www.phyde.de.
- NOGUCHI, A. 1991. Illustrated moss flora of Japan. Pt. 4. Hattori Botanical Laboratory, Nichinan: 743–1012.
- OCHYRA, R. & T. PÓCS. 1982. East African bryophytes, VI. Polish collections. – Acta Botanica Academiae Scientiarum Hungarica 28: 361–389.
- PIIPPO, S. 1987. Notes on Asiatic Brachytheciaceae. Memoirs of the New York Botanical Garden 45: 515–518.
- QUANDT, D., K. MÜLLER & S. HUTTUNEN. 2003. Characterisation of the chloroplast DNA psbT-H region and the influence of dyad symmetrical elements on phylogenetic reconstructions. – *Plant Biology* 5: 400–410.
- ROBINSON, H. 1962. Generic revisions of North American Brachytheciaceae. – Bryologist 65: 73-146.
- SANDE LACOSTE, C.M., van der. 1866. Musci Frondosi. In: Miquel, FAG (ed.), Prolusio Florae Japonici. Annales Musei Botanici Lugduno-Batavi, T. 2: 292–299.
- SCHUSTER, R.M. 1983. Chapter 10. Phytogeography of the Bryophyta. – In: Schuster, R.M. (ed.) New manual of bryology. Nichinan, The Hattori Botanical Laboratory. Pp. 463–626.
- SHAW, J., E.B. LICKEY, J.T. BECK, S.B. FARMER, W. LIU, J. MILL-ER, K.C. SIRIPUN, C.T. WINDER, E.E. SCHILLING & R. L. SMALL. 2005. The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. – American Journal of Botany 92: 142–166.
- SIMMONS, M.P., & H. OCHOTERENA. 2000. Gaps as characters in sequence-based phylogenetic Analyses. – Systematic Biology 49: 369–381.
- STAMATAKIS, A. 2006. RAXML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. – *Bio*informatics 22: 2688–2690.
- STAMATAKIS, A., P. HOOVER & J. ROUGEMONT. 2008. A rapid bootstrap algorithm for the RAxML Web servers. – *Systematic Biology* 57: 758–771.
- TAKAKI, N. 1955. Researches on the Brachytheciaceae of Japan and its adjacent areas I. *Journal of the Hattori Botanical Laboratory* 14: 1–28.
- WANG, Y. F. 2008. Brachytheciaceae. In: Hu, R.-L., Y.-F. Wang, M. R. Crosby & S. He. 2008. Amblystegiaceae—Plagiotheciaceae. 7: viii+ 258 pp. In Moss Fl. China. Science Press & Missouri Botanical Garden, Beijing, New York & St. Louis.

Table 1. Voucher specimens used for molecular studies at	nd GenBan	k/EMBL acce	ssion number	s for sequence	s.		
Species	Sample N	<i>rpl</i> 16	atpB-rbcL	trnD-T	trnL-F	ITS1-5.8S-IT	S2 Voucher specimen (Herbarium; herbarium id)
Aerobryum speciosum (Doz. & Molk.) Doz. & Molk	SH13	MK138456	MK138422	FM244767	AF397780	AF403619 * EMD4557	China, Hunan prov., T. Koponen & al. 52753, 9.X.1997 (H)
Ae rolindigia capillacea (Hornch.) Menzel	SH31		MK138423	FM244763	AY044072	& FINL24205/ AF395634	Ecuador, Loja prov., D. H. Norris 92175 & M. Bolivar,
Brachytheciastrum collinum (Schleich. ex Müll. Hal.)	SH232	EF531025	EF530960	MK138389	DQ336923	& DQ200954 DQ200954	0 18.XII.1997 (H) Russia, Kamchatka, Czemyadievk £53, 21. VII.2003 (MHA)
Ignatov & Huttunen B. velutinum (Hedw.) Ismatov & Huttunen	SH78	EF531033	EF530965	MK138390	AF397832	& DQ200071 AF403667 Fii	ıland. Karialohia. M. Kiirikki. 23. VIII.1988 (H)
						& EF558538	
<i>Brachythecium rivulare</i> Schimp. <i>Cirribhvllum niliferun</i> (Hedw.) Grout	SH131 SH33	EF531018 EF531017	EF530950 EF530949	FM244742 FM244761	AF397866 AF397799	FM161081 AF403608	Finland, Hyrynsalmi, A. Parnela, 19. V. 1996 (H) Finland, Lohia, T. Konomen & S. Huttunen 1324, 24, V.1999 (H)
Eurhynchiastrum pulchellum (Hedw.) Ignatov & Huttunen Eurhynchiam maustizete (Roch.) T Kon	n SH34 SH66	EF531024 MK138457	EF530956 MK138474	- 17746	AY044069 AF397875	& DQ200081 FM161101 AF403621	Finland, Lohja, T. Koponen & S. Huttunen 1321, 24.V.1999 (H) Russia Moscoux Prov. M. Iematrov 3 VII 1998 (MHA)
	202113	0210012014	201001201		001001204	& DQ200086	
<i>E. angustirete</i> <i>F. stristum</i> (Schreh ev Hedw) Schimn	CELINC SH147	MK138460	MK138427	FM744777	004001 /1 10408	FM747661	Kussia, Souut Stoefta, Neitterovo Frov, O. 1u. Fisateliko 22. v 11.2007 (S. D 13 6436) Russia Cancasus Makridin 13 VII 1908 (MHA)
E. striatum	SH796	MK138461	MK138428	MK138392	MK138489	MK120837	Switzerland, Kt. Tessin, L. Hedenäs 14.IV.2006 (S: B111448)
Homalothecium aeneum (Mitt.) Lawton	SH349	EF531044	EF530986	MK138393	MK138490	EF617574	Canada, British Colombia, W. B. Schofield 117349, 18.V.2001 (UBC; B186983)
H. arenarium (Lesq.) E. Lawton	SH343	EF531034	EF530966	MK138394	MK138491	EF617554	Canada, British Colombia, P. Henderson 12, 22.IV.2003 (UBC; B185615)
H. aureum (Spruce) H. Rob.	SH302	EF531082	EF530970	MK138395	MK138492	EF617557	Cyprus, Trodos, L. Hedenäs, 29.XI. 1995 (S; B106846)
H. californicum Hedenäs & al.	SH432	EU684459	EU684452	ı		EU697738	USA, California, J. R. Shevock 29193, 28.X.2006 (S; B148197)
H. fulgescens (Mitt. ex Müll. Hal.) A.Jaeger	SH363	EF531039	EF530979	MK138396	EF531039	EF530979	Canada, British Colombia, W. B. Schoffeld & R. J. Belland 93259, 18. IV. 1989 (UCB)
Homalothecium laevisetum Sande Lac.	SH792	MK138462	MK138429	MK138397	MK138493	MK120838	Japan, Tochigi Prov., M.Higuchi 1208, 5.V.1999 (S; B138825)
H. laevisetum	SH808	MK138464	MK138431	MK138399	MIK138495	MK120840	Russia, Primorsky territory, M. Ignatov & E. Ignatov #06-2953, 29.1X.2006 (MHA)
H. laevisetum	SH809	MK138463	MK138430	MK138398	MK138494	MK120839	Russia, Kuril Islands, M. Ignatov #06-1870, 27. VII.2006 (MHA)
H. laevisetum	SH67	EF531023	EF530955	FM244773	AF397820	FM242663	China, Hunan prov., T. Koponen & al. 54066, 30.VII.1998 (H)
H. lutescens (Hedw.) H.Kob. H	5H544	EF531050	EF5309/3	MIK138400	MIK138490	EF01/2520	Denmark, Jylland, L. Hedenas, 20.1V.2005 (S; B1012/1) 11 S. A. Wischington, W. D. Schröffigh 110245 11 W7000 d mCV
<i>H. megaptutum</i> (Sullivant) Schorleid <i>H. nevadense</i> (Lesq.) Renauld & Cardot	SH344 SH355	EF531047 EF531047	EF530988 EF530988	MK138401 MK138402	MK13849/ MK138498	EF01 /208 EF617576	U.S.A., Wasmington, W. B. Schontald 112546, 11.1V.2002 (UBC) U.S.A., Idaho, W. B. Schoffeld 118833, 25.1X.2001 (UBC; B189551)
H. nuttallii (Wilson) A. Jaeger	SH362	EF531078	EF530991	MK138403	MK138499	EF617579	Canada, British Colombia, W.B. Schofield & al. 87599, 26.III.1987 (UBC)
H. philippeanum (Spruce) Schimp.	SH310	EF531074	EF531000	MK138404	MK138500	EF617584	Kazahstan, Alma Ata, B. Allen 10715, 17.VII.1991 (S; B106957)
H. sericeum (Hedw.) Schimp.	SH319	EF531066	EF531012	MK138405	MK138501	EF617595	France, Cabernet, G. Een, 3.X.1998 (S; B107454)
Oxyrrhynchium hians (Hedw.) Loeske	SH1140	MK138465	MK138432	MK138406	MK138502	MK120841	Finland, Turku, J. Issakainen & al., X.2011 (TUR; TUR 120943)
O. speciosum (Brid.) Warnst.	SH1097	MK138466	MK138433	MK138407	MK138503	MK120842	Sweden, Gotland, K. Hylander 2992, 26.X2002 (S; B107577)
Palamocladium euchloron (Bruch ex Müll. Hal.) Wijk & Margad.	SH93	ı	I	FM244774	AF397851	FM242672	Russia, Caucasus, M. Ignatov, 23.VIII.1999 (MHA)
P. euchloron	SH407	MK138467	MK138434	MK138408	MK138504	MK120843	Turkey, Trabzon prov., E. Nyholm 147/82, 8.X.1982 (S; B101851)
P. leskeoides (Hook.) Britt.	SH1180	MK138476	MK138443	MK138416	MK138512	MK120851	Brasil, Parana, D. F. Peralta & al. 12710, 17.XI.2012 (TUR; TUR 118674)
P. leskeoides	SH1174	MK138475	MK138442	MK138415	MK138511	MK120850	Brasil, Rio Grade do Sul, D. F. Peralta 10470, 14.IV.2010 (TUR; TUR 118683)
P. leskeoides	SH18	MK138468	MK138435	FM244775	AF397791	FM242673	China, Hunan prov., T. Koponen & al. 52596, 10.X.1997 (H)
P. leskeoides.	SH400	MK138469	MK138436	MK138409	MK138505	MK120844	China, Hunan prov., T. Koponen & al. 51817 (H)
P. leskeoides	SH405	MK1384/U	MK138437	MK138410	MK138506	MK120845	Colombia, Norte de Santander, S. P. Churchill & al., 24.1.1995 (S)

102

continued on next page

Table 1 (cont.). Voucher specimens used for molecular studies and GenBank/EMBL accession numbers for sequences.

Palamocladium leskeoides (Hook.) Britt. P. leskeoides	OK797 OK798	MK138472 MK138473	MK138439 MK138440	MK138412 MK138413	MK138508 MK138509	MK120847 MK120848	Philippines, Mindanao prov., F. Schumm & U. Uwe Schwarz 4578, 10. VIII. 1999 (MHA) Philippines Mindanao prov., F. Schumm & U. Uwe Schwarz 4579, 10. VIII. 1999 (MHA)
P. leskeoides	OK800	MK138474	MK138441	MK138414	MK138510	MK120849	Bhutan, G. & S. Miehe 00-086-02, 2000 (MHA)
P. leskeoides	SH788	MK138477	MK138444	MK138417	MK138513	MK120852	Kenya, Mount Elgon National Park, T. Pocs & al. 9211/BV, 11-27.1.1992 (H; H3204174)
P. leskeoides	SH789	MK138478	MK138445	MK138418	MK138514	MK120853	Tanzania, Nguru Mountains, G. Kis & T. Pocs 9105/B, 30.I.1991 (H)
P. wilkesianum (Sull.) Müll. Hal.	SH408	MK138471	MK138438	MK138411	MK138507	MK120846	Hawaii, Oahu, W. J. Hoe 3336, 2.1.1975 (S)
Plasteurrhynchium meridionale (Schimp.) M.Fleisch.	SH410	MK138459	MK138426	FM244770	FM242060	FM242660	France, Alpes Maritimes, G. & P. Een, 26.IX.2001 (S; B62881)
P. striatulum (Spruce) Schimp.	SH153	MK138479	MK138446	FM244776	AY184792	FM242656	Georgia, Abkhazia, M. Ignatov, 1.VIII.1987 (MHA)
P. striatulum	SH411	MK138480	MK138447	MK138419	MK138515		Germany, Baden-Württemberg, L. Hedenäs, 17.IV.1998 (S; B6358)
Pseudoscleropodium purum (Hedw.) M.Fleisch	SH21	MK138482	MK138449	FM244768	AF397797	FM242678	Czech Republic, Central Bohemia, J. Vana & J. Enroth, 30.IV.1999 (H)
Rhynchostegiella macilenta (Renauld & Cardot) Cardot	SH101	MK138483	FJ262464	FM244758	AF397781	AF403570	Portugal, Madeira, L. Hedenäs, 13.V.1993 (S; B4503)
						& DQ200109	
Rhynchostegium confertum (Dicks.) Bruch & al.	SH29	ı	MK138450	FM244795	AF397837	AF403622	Georgia, Caucasus, M. Ignatov, 27. VIII. 1987 (MHA)
						& DQ200109	
R. megapolitanum (Blandow ex F.Weber & D.Mohr) Schimp.	SH388	MK138484	MK138451	FM244810	FM242078	FM242692	Portugal, Alentejo Baixo, G. & P. Een, March 18.III.1999 (S; B18444)
R. riparioides (Hedw.) Dixon	SH220	MK138481	MK138448	FM244783	DQ336931	DQ200969	Finland, S. Huttunen 1683, 29. VIII. 2002 (H)
						& DQ336916	2
R. tenuifolium (Hedw.) Reichardt	SH335	MK138485	MK138452	FM244816	FM242080	FM242694	Australia, Australian Capital Territory, H. Streimann 50179, 20.X.1992 (H)
Scleropodium obtusifolium (Brid.) L.	SH40	,	MK138453	MK138420	AF397793	AF403615	USA, California, M. Ignatov & D. H. Norris, 13. VIII. 1989 (MHA)
						& DQ200116	2
Scorpiurium circinnatum (Brid.) M.Fleisch.	SH354	MK138486	MK138454	FM244769	FM242081	FM242695	Portugal, Coimbra, L. Hedenäs, 22.IX.2000 (S; B44524)
S. deflexifolium (Solms.) M.Fleisch. & Loeske	SH102	MK138487	MK138455	MK138421	AF397844	AF403599	Portugal, Madeira, L. Hedenäs & I. Bisang, 21.XI.1999 (S; B22455)