ON MOSS FAMILY LEMBOPHYLLACEAE IN THE RUSSIAN FAR EAST О MXAX СЕМЕЙСТВА LEMBOPHYLLACEAE НА РОССИЙСКОМ ДАЛЬНЕМ ВОСТОКЕ Elena A. Ignatova¹, Vladimir E. Fedosov^{1,2}, Alina V. Fedorova³, Ulyana N. Spirina^{3,4} & Michael S. Ignatov^{1,3} Елена А. Игнатова¹, Владимир Е. Федосов^{1,2}, Алина В. Федорова³, Ульяна Н. Спирина^{3,4},

ЛЕНА А. ИГНАТОВА¹, ВЛАДИМИР Е. ФЕДОСОВ^{1,2}, АЛИНА В. ФЕДОРОВА³, УЛЬЯНА Н. СПИРИНА^{3,4}, МИХАИЛ С. ИГНАТОВ^{1,3}

Abstract

An integrateive approach to the revision of the Lembophyllaceae in the Russian Far East, includinig molecular phylogenetic and morphological studies, revealed five species, three of *Dolichomitriopsis*, including one new species, *Dolichomitriopsis cherdantseviae*, and one species of *Dolichomitra*, one new genus *Dolichomitriadelphus* for the taxon commonly known as *Isothecium hakkodense*. The species known as *Isothecium subdiversiforme* is still not found in Russia, so it was analyzed based on Japanese material and also determined to be unrelated to any other species of Lembophyllaceae, thus it is segregated in a genus of its own, *Isotheciastrum*. The combined analysis of European, Asian and American species shows that the genus *Isothecium* has mostly Amphiatlantic distribution and combines species of *I. alopecuroides* affinity. The group of *Isothecium myosuroides* and related species form a clade sister to Asian *Dolichomitra*, *Dolichomitriopsis*, *Isotheciastrum*, and American *Bryolawtonia* and *Tripterocladium*. This fact suggests a resurrection of the genus *Pseudisothecium* Grout for *I. myosuroides*, *I. stoloniferum*, *I. interludens*, *I. prolixum*, *I. montanum*, *I. holtii*, *I. cardotii*, and *I. cristatum*. All species of the family from the Russian Far East are illustrated and the variation of their morphology is discussed.

Резюме

Интегративный подход к ревизии гербарных образцов Lembophyllaceae с российского Дальнего Востока, включающий молекулярно-филогенетический анализ и сравнение морфологических приззнаков, позволил выявить в регионе пять видов, три из которых относятся к родуDolichomitriopsis, один из них новый для науки, Dolichomitriopsis cherdantseviae, а также один вид из рода Dolichomitra и один вид из нового рода Dolichomitriadelphus, ранее известный как Isothecium hakkodense. Isothecium subdiversiforme, пока не найденный в России, был также включен в анализ с использованием образцов из Японии; он оказался не родственным ни одному из известных видов Lembophyllaceae, и на этом основании он выделен в особый род Isotheciastrum. Комбинированный анализ европейских, азиатских и американских видов показал, что род Isothecium имеет б.ч. амфиатлантическое распространение и объединяет виды из родства I. alopecuroides. Isothecium myosuroides и родственные ему виды образуют кладу, сестринскую азиатским видам из родов Dolichomitra, Dolichomitriopsis, Isotheciastrum, а также американским видам из родов Bryolawtonia и Tripterocladium. Это предполагает восстановление рода Pseudisothecium Grout для I. myosuroides, I. stoloniferum, I. interludens, I. prolixum, I. montanum, I. holtii, I. cardotii и I. cristatum. Приводятся иллюстрации для всех российских дальневосточных видов семейства и обсуждается вариабельность их морфологических признаков.

KEYWORDS: bryophytes, molecular phylogeny, taxonomy, branch primordia, *Isotheciastrum*, *Dolichomitriadelphus*, *Dolichomitra*, *Dolichomitriopsis*, *Pseudisothecium*

INTRODUCTION

Recent check-list of the moss flora of Russia (Ignatov *et al.*, 2006) and of Far Eastern mosses (Cherdantseva *et al.*, 2018) mentioned only two species of the Lembophyllaceae in the Russian Far East: *Dolichomitriopsis diversiformis* (Mitt.) Nog. and *Isothecium hakkodense* Besch.

Even despite of only two, these species were not always correctly identified in herbaria. The difficulties in identification were caused by broad variation, absence of characters which are easy to present in manuals, and due to placement these two species into different genera, moreover, classified in different families and published in the

¹ – Lomonosov Moscow State University, Faculty of Biology, Plant Ecology and Geography Dept., Leninskie Gory Str. 1-12, Moscow 119234 Russia; e-mails: arctoa@list.ru; fedosov_v@mail.ru

² – Botanical Garden-Institute, FEB RAS, Makovskogo Street, 142, Vladivostok, 690024, Russia

³ – Tsitsin Main Botanical Garden, Russian Academy of Sciences, Botanicheskaya Str., 4, Moscow 127276 Russia; e-mails: alina_77777@mail.ru; misha_ignatov@list.ru

⁴ – Faculty of Biology, Tver State University, Zhelyabova 33, Tver 170100 Russia; e-mail: ulayspirina@mail.ru

"Illustrated moss flora of Japan" in different volumes (Noguchi & Iwatsuki, 1989; Noguchi et al., 1991).

The species of *Isothecium* are widespread in Europe and Macaronesia, and two most common European species, *I. alopecuroides* (Lam. ex Dubois) Isov. and *I. myosuroides* Brid., extend to the western regions of European Russia, whereas species of *Isothecium* are absent in the territories east of the Caucasus and up to the Russian Far East, where *I. hakkodense* occurs. The original intension of this study was to check if the generic position of the latter species can be confirmed using a molecular phylogenetic approach.

However, it soon became clear that the East Asian Lembophyllaceae comprise a more puzzling complex, thus more groups of this family were involved in the study.

The circumscription of the family Lembophyllaceae is vague. It originally included four genera: *Camptochaete, Dolichomitra, Isothecium,* and *Lembophyllum* (Brotherus, 1907). The subsequent challenges in the scope of the family were overviewed by Tangney (1997), who accepted in it *Camptochaete, Fallaciella, Fifea, Lembophyllum* and *Weymouthia,* moving ten genera to other families. For example, *Isothecium* was placed in Brachytheciaceae and *Dolichomitriopsis* in Meteoriaceae.

The same circumscription of the family was accepted by Quandt et al. (2000), who considered it as a sister clade to Meteoriaceae; further Quandt et al. (2009) expanded it based on molecular phylogenetic reconstruction and included in the family a suite of lineages sister to the Lembophyllaceae sensu Tangney (1997). Their paper provides a historical overview of the Lembophyllaceae circumscription. Classification by Frey & Stech (2009) mostly follows Quandt et al. (2009); 14 genera are accepted in the Lembophyllaceae: Bestia, Camptochaete, Dolichomitra, Dolichomitriopsis, Fallaciella, Fifea, Isothecium, Lembophyllum, Looseria, Neobarbella, Pilotrichella, Rigodium, Tripterocladium, and Weymouthia. Goffinet et al. (2009) also included in the Lembophyllaceae the genera Acrocladium and Orthostichella, but did not include Dolichomitra, Rigodium and Tripterocladium. Since then, Nogopterium (=Pterogonium) appeared in some molecular phylogenetic analyses within the Lembophyllaceae (Troitsky et al., 2008) or sister to that family (Huttunen et al., 2012; Ignatov et al., 2019) and thus it was placed in this family along with Mawenzhangia, newly described from Yunnan (Enroth et al., 2018). Orthostichella was placed in a separate family (Enroth et al., 2019). Finally, Ignatov et al. (2019) based on the molecular phylogenetic reconstruction of the Neckeraceae-Orthostichellaceae-Lembophyllaceae phylogeny suggested the inclusion of Heterocladium s.str. in the Lembophyllaceae. However, differences in the obtained topologies occurred from study to study, partly due to the differences in representation of the genera and partly due to different studied markers.

Isothecium was the only genus in focus of special molecular studies and therefore it was extensively sampled (Draper *et al.*, 2007, 2015), but mostly European species were involved in these studies and thus affinities of Asian representatives of the genus were not comprehensively addressed until now. The aim of the present study was to consider Asian species of *Isothecium* and closely related genera in the broader molecular phylogenetic context and to estimate their affinities based on the obtained reconstructions.

MATERIAL AND METHODS

Molecular phylogenetic studies

The material used in the present study was sampled from MW and MHA and supplemented by sequences available in GenBank. For the molecular-phylogenetic study we used five markers, nuclear ITS1,2 and 5.8 rRNA gene, plastid trnG intron and trnS-F region, which were successfully used in phylogenetic studies of Lembophyllaceae and related families (Vanderpoorten et al., 2002; Draper et al., 2007, 2015; Olsson et al., 2009; Quandt at al., 2009; Hodgetts & Vanderpoorten, 2018, etc.). Besides the representatives of Lembophyllaceae from temperate areas of Asia, the closely related lineages of Isothecium were originally sampled for phylogenetic study. In total, 19 ingroup specimens were studied de novo. The obtained alignments were added by ITS, trnG and trnL-F sequences of Isothecium from GenBank, obtained by Draper et al. (2007, 2015), and by ITS & trnL-F (in some cases trnT-trnF or trnS-trnF) sequences of miscellaneous lineages of Lembophyllaceae obtained by Quandt et al. (2000, 2009) and Olsson et al. (2009). To provide representation of major clades of pleurocarpous mosses, both closely related groups and putative outgroups, sequences for suite of species well represented in GenBank were included based on the previously published reconstructions and our alignment designed for phylogenetic study of Anomodon and Heterocladium (Ignatov et al., 2019). Vouchers of the newly studied specimens and GenBank accession numbers of all used sequences are compiled in Appendix 1.

The laboratory protocol was essentially the same as in previous moss studies, described in detail by, e.g., Gardiner et al. (2005) and Hedenäs (2017). Sequences were aligned using MAFFT v. 7.402 (Katoh & Standley, 2013) with standard settings and then edited manually in BioEdit (Hall, 1999). At first, ITS (124 terminals, 792 bp), trnG (94 terminals, 616 bp), trnL-F (134 terminals, 431 bp) and trnS-F + trnL-F (56 terminals, 1938 bp), were analyzed separately to check their congruence. Since no supported conflict of topologies were observed among the trees inferred from these markers, the combined ITS - trnG - trnS-F, (including trnL-F) dataset (83 terminals, 3346 bp), divided into two partitions, for nr and cp data, was analyzed. In all analyses indels were coded using simple indel coding approach (Simmons & Ochoterena, 2000) in SeqState 1.4.1 (Müller, 2005). An inversion in the trnL-trnF spacer was coded by binary code.

Bayesian Analyses were performed by running two parallel analyses in MrBayes 3.2.7a (Ronquist et al., 2012). For the single gene sets analyses each run consisted of six Markov chains, 10 000 000 generations with default number of swaps and sampling frequency one tree each 2500 generations. For the combined dataset the analysis consisted of eight Markov chains and 25 000 000 generations, with the default number of swaps and sampling frequency one tree each 5 000 generations was performed. The chain temperature was set at 0.02 in all analyses. Convergence of each analysis was evaluated using Tracer1.4.1 (Rambaut & Drummond, 2007). Consensus trees were calculated after omitting the first 25% trees as burn-in. Maximum Likelihood (ML) trees were estimated using RaxML 8.2.12 (Stamatakis, 2014) from 1000 independent searches each starting from distinct random trees. Robustness of the nodes was assessed using standard non-parametric bootstrap with 1000 iterations. Analyses were performed on the Cipres Science Gateway (http://www.phylo.org/portal2) on XSEDE (Miller *et al.*, 2010). The default outgroup for rooting the trees was evaluated using the previously published reconstructions of the backbone phylogeny of pleurocarpous mosses (Huttunen *et al.*, 2012).

Morphological studies were conducted by a standard method, with additional attention to the structure of branch primordia, and especially proximal branch leaves. Previous studies of Spirina & Ignatov (2015) found them to have diverse and unusual structure, thus we studied them with the goal to find additional characters, important as morphological distinctions between genera that are not contrasting enough in the Lembophyllaceae. For SEM study we took several branches of one specimen selected as "typical" for the species after ordinary observation under light microscope. Chosen herbarium samples were soaked in wa-

ter for 24 hours, then fixed in 2,5% glutaraldehyde for 24 hours, post-fixed with 1% osmium tetroxide, water solution, for 3 hours. Then material was dehydrated through a graded ethanol/acetone series to 100% acetone and dried at a critical point, covered by gold and observed under SEM Jeol 6380. Partly previously done SEM images are used here: they were obtained under a similar preparation, under SEM LEO-430.

RESULTS

Molecular phylogeny.

Lembopyllaceae s.l., including *Heterocladium* and *Nogopterium+Mawenzhangia* were resolved as monophyletic, originating from the Neckeraceae s.l. ancestral groups. The difference between ITS and ITS+*trnS*– F+*trnG* analyses refer to the support values for two basal lineages, *Heterocladium* and *Nogopterium+Mawenzhangia*. The high statistical support in the ITS tree was found only for Lembophyllaceae s.l. (PP=1, ML=96), while the clade without these three genera, Lembophyllaceae s. str., has low support (PP=0.93, ML=50). The concatenated tree has higher support for Lembophyllaceae s. str. (PP=1, ML=96) than for Lembophyllaceae s.l. (PP=1, ML=84).

The most basal lineage in the Lembophyllaceae s. str. is the East Asian monospecific genus *Dolichomitra*. Next in the grade are mostly South Hemispheran clades of *Rigodium* and "core Lembophyllaceae" (in ITS tree, Fig. 1); which are combined in one clade in the concatenated tree (Fig. 2), and terminal clade is composed of *Isothecium* and related taxa, most of them were earlier treated in the genus *Isothecium*. The genera of intermediate clade, *Camptochaete, Fallaciella, Fifea, Lembophyllum, Looseria, Neobarbella, Rigodium,* and *Weymouthia* are included in the present analysis to be certain that the species of the Far Eastern Lembophyllaceae do not relate to any of them; this is obvious from the topology in Figs. 1 and 2, therefore, we do not address this group in detail.

The terminal, "Isothecium s.l."-clade, is low supported in ITS tree (PP=0.94 / BS<50), and only a little more in concatenated tree (PP=0.97 / BS=79). The tree inferred from the analysis of combined dataset revealed in "Isothecium s.l."-clade three subclades, where clade (1) Isothecium alopecuroides + I. algarvicum W.E. Nicholson & Dixon, with PP=1, BS=80, is sister to the join clade of other taxa, though the latter has very short branch and no support (PP<70, BS<50). This join clade is formed of two subclades: (2) "East Asian" clade (PP=1, BS=84), including species of the East Asian genus Dolichomitriopsis and two East Asian species treated as Isothecium, I. hakkodense and I. subdiversiforme Broth., and (3) the clade of species around Isothecium myosuroides. The latter includes several North American species, I. stoloniferum Brid., I. cardotii Kindb., and I. holtii Kindb., Macaronesian I. prolixum (Mitt.) M. Stech, Sim-Sim, Tangney & D. Quand and West European I. interludens Stirt. and also two North American genera from Pacific North-West, Bryolawtonia and Tripterocladium.

In ITS tree Bryolawtonia and Tripterocladium occur in a different position, clustering with East Asian species as follows. The East Asian group is not resolved as a clade, but as two clades in tritomy, where the third is the clade of species around Isothecium myosuroides. One of clades (without support) includes two highly supported clades of two specimens of Isothecium hakkodense and of two specimens of Isothecium subdiversiforme. The second clade has a low support as a whole (PP=0.88, <50), it includes a clade of two specimens of Tripterocladium (PP=1, ML=99), which is sister to moderately supported clade of Dolichomitriopsis+Bryolawtonia (P=0.99, ML<50). In the latter Bryolawtonia forms the almost unsupported clade with Dolichomitriopsis crenulata S. Okamura (P=0.71, ML<50), sister to the rest of Dolichomitriopsis (P=1, ML=86), composed of two clades, one of six specimens of D. diversiformis (PP=1, ML=98) and of two specimens of a new species described below (PP=1, ML=100).

Observation on branch primordia morphology

The SEM pictures in Figs. 3–5 show polymorphism seen even within one sample, providing difficulties in their descriptions. Below we describe proximal branch leaves and branch primordia structures following terminology explained in detail in Spirina & Ignatov (2015).

In *Dolichomitra*, Figs. 3A–C, the first and second proximal branch leaves are compound, with their parts sometimes spaced, short triangular to oblate or just in a shape of low ridge, entire to serrate and incised. The third or sometimes also fourth and fifth proximal branch leaves are shallowly bilobed. Overall branch primordium shape is low hemispheric, with rather remote position of outer elements.

In *Lembophyllum*, Figs. 3D–F, the first proximal branch leaf is steadily reduced but the second one is developed, it is entire or slightly dissected, while the third one is divided into 2 or 3 lobes almost to the base. Leaves are obtuse and overall shape of branch primordium is about compact hemispheric.

In *Camptochaete*, Figs. 3G–I, the first or the first and second proximal branch leaves are reduced. If the second leaf is present it is either dissected into 2–4 lobes or entire. The third leaf often is bilobed or rarely entire. Overall branch primordium shape is low hemispheric.

Rigodium brachypodium (Müll. Hal.) Paris, Figs. 3J– L, has constant reduction of the first leaf and occasional presence of the compound second one, with closely arranged 3–5 triangle segments, often without apparent connection to each other at the level of stem surface. The third leaf is hood-like, entire or bilobed and dissected almost to the base and sometimes even compound. Branch primordium is low hemispheric, moderately compact.

In *Isothecium subdiversiforme*, Figs. 3M–O, the proximal branch leaves at early stage are oblate, widely rounded and clearly bilobed, with the first proximal branch leaf occasionally reduced. More developed proximal branch leaves are distally truncate and serrulate

Fig. 3. Branch initials with proximal branch leaves of species of the Lembophyllaceae: A–C: *Dolichomitra cymbifolia* (Kuril Islands, *Bakalin K-45-29-07* MHA); D–F: *Lembophyllum divulsum* (Hook. f. & Wilson) Lindb. (Australia, *Streimann 59035* MHA); G–I: *Camptochaete arbuscula* (Sm.) Reichardt (Australia, Streimann 49126 MHA); J–L: *Rigodium brachypodium* (Chile, *Crosby 11893* MHA); M–O: *Isothecium subdiversiforme* (Japan, *Ignatov & Ignatova 98-580* MHA). Scale bar: 50 µm for all. Numerals indicate the proximal leaf number (cf. explanation in Spirina & Ignatov, 2015), with numbers of reduced leaves given in brackets and parts of compound leaves marked by the same numeral. Stem apex is on the right hand side.

Fig. 4. Branch initials with proximal branch leaves of species of the Lembophyllaceae: A–D: *Isothecium alopecuroides* (Russia, *Ignatov & Ignatova 56/2*, MHA9038346); E–F: *Pseudisothecium cristatum* (USA, 7 Aug 1989 *Ignatov s.n.*, MHA 9055205); G–I: *Pseudisothecium stoloniferum* (USA, *Shevock 31779*, MHA 9055241); J–L: *Pseudisothecium myosuroides* (Krasnodar, *Teplov 2015-029*, MHA9038401); M–O: *Isothecium hakkodense* (Russia, Kuril Islands, *Ignatov 06-1125*, MHA9109600). Scale bar: 50 µm for all. Numerals indicate the proximal leaf number (cf. explanation in Spirina & Ignatov, 2015), with numbers of reduced leaves given in brackets and parts of compound leaves marked by the same numeral. Stem apex is on the right hand side.

Fig. 6. Branch initials with proximal branch leaves of species of the Lembophyllaceae: A–C: *Dolichomitriopsis diversiformis* (Russia, *Koroteeva 15-10/4-3*, MHA); D–E: *Dolichomitriopsis cherdantseviae* (Russia, Kuril Islands, *Ignatov 06-2107*, MHA); F–H: *Dolichomitriopsis crenulata* (Japan, 19 Nov. 1961, *Ikegami s.n.*, MHA); I–L: *Bryolawtonia vancouverensis* (USA, 8 Aug 1989, *Ignatov & Norris s.n.*, MHA9051011); M–N: *Tripterocladium leucocladum* (Canada, 23 Apr 1979 *Schofield s.n.*, MHA9059395). Scale bar: 50 µm for all. Numerals indicate the proximal leaf number (cf. explanation in Spirina & Ignatov, 2015), with numbers of reduced leaves given in brackets and parts of compound leaves marked by the same numeral. Stem apex is on the right hand side.

along the margin. Branch primordium is hemispheric, moderately compact.

In *Isothecium alopecuroides*, Figs. 4A–D, the proximal branch leaves are broadly ovate to suborbicular, and even if they are strongly divided into lobes, *e.g.*, in Figs. 4C–D, their parts look broad and obtuse. The outermost and subsequent leaves are similar, so when the first or first and second proximal branch leaves are reduced, the existing leaves form the same shape, so branch primordium as a whole looks compact hemispheric.

In *Isothecium cristatum* (Hampe) H. Rob., Figs. 4E– F, the proximal branch leaves are broad, entire, and the first one is in 12 o'clock position, indicating that first and second proximal branch leaves are reduced. Overall shape of branch primordium is low hemispheric.

In *Isothecium stoloniferum*, Figs. 4G–I, the proximal branch leaves are entire, bilobed, incised to compound, reduced to low ridges beside primordium to welldeveloped, crenulate along margins. Overall shape of branch primordium is loose hemispheric or it is represented by an open group of low elements.

In *Isothecium myosuroides*, Figs. 4J–L, the proximal branch leaves are incised, laciniate to compound, entire, bilobed, incised to compound, reduced to low ridges beside primordium to well-developed, crenulate along margins. Overall shape of branch primordium is loose hemispheric or it is represented by an open group of low elements.

In *Isothecium hakkodense*, Figs. 4M–O, the proximal branch leaves are broadly ovate to compound of also highly variable parts, from oblate to narrowly triangular, irregularly crenulate along margins. Overall shape of branch primordium is low hemispheric.

Dolichomitriopsis diversiformis, Figs. 5A–C, has compound outermost proximal branch leaves, with incised segments; in observed specimens no complete reduction was observed, *i.e.* the first proximal leaf was in 4 o'clock position. Overall shape of branch primordium is hemispheric.

In *Dolichomitriopsis* [new species], Figs. 5D–E, the first and second outer branch leaves may be reduced or present, but in both cases the outermost proximal branch leaves are broadly oblate, serrate, bilobed or entire. Overall shape of branch primordium is low, moderately compact hemisphere.

In *Dolichomitriopsis crenulata*, Figs. 5F–H, the first and second proximal branch leaves are usually completely reduced, although rarely small lamina of the second leaf is developed; third leaf is bilobed, sometimes with more lobes; overall shape of branch primordium is low hemispheric.

Bryolawtonia, Figs. 5I–K, has relatively invariable branch primordia with the outermost proximal branch leaf in 12 o'clock position, which means the reduction of the first and second proximal branch leaves, typical for Brachytheciaceae (Ignatov, 1999). Contrary to Brachythe-

ciaceae, however, this outermost leaf is bilobed. Branch primordium is flat at early stage to compact hemispheric later.

In *Tripterocladium*, Figs. 5L–N, proximal branch leaves are deeply bilobed, with narrow to broad-ovate lobes; branch primordium in hemispheric, moderately compact.

DISCUSSION

Lembophyllaceae were found monophyletic both sensu lato, including Heterocladium and Nogopterium+ Mawenzhangia, and sensu stricto, without these three genera. As the present sampling was not focused specifically on the whole Lembophyllaceae, the controversy of these results cannot be properly discussed here. The more distal position of Heterocladium from Lembophyllaceae was found in some other analyses, e.g. Wang & Jia (2019). As it was already mentioned in Material and Method section, few ITS sequences strongly different from "typical" (i.e. widely represented in GenBank) were not included in the analyses, though few identical sequences occur in Gen-Bank as well. They are so different that appear in the tree outside not only Isothecium and Lembophyllaceae s.str., but also Lembophyllaceae s.l. The reason of such a hypervariability is interesting, but it requires a special study. Leaving out those sequences, the phylogeny of Lembophyllaceae looks consistent with earlier phylogenies, based on representation of taxa by one or few specimens, and with morphological circumscription of taxa.

The position of the East Asian monospecific *Dolichomitra* in the basal most position in the Lembophyllaceae s. str. is in agreement with the previously published reconstruction of Quandt *et al.* (2009) and highly distinctive peristome structure of *Dolichomitra*: exostome teeth narrow, on dorsal surface smooth below and with high ridges of OPL cell remnants, densely papillose distally; endostome segments narrow and unperforiated, cilia lacking. In addition, the outermost proximal branch leaves in branch primordia are compound and their lobes at early stage of development are spaced, which occurs in some Neckeraceae (Spirina & Ignatov, 2015) and *Heterocladium* (Ignatov *et al.*, 2019).

The genera of "core Lembophyllaceae" and some mostly South Hemispheran genera, *i.e., Camptochaete, Fallaciella, Fifea, Lembophyllum, Looseria, Neobarbella, Rigodium,* and *Weymouthia*, were found in intermediate clade (Fig. 2) or grade (Fig. 1); such position confirms their distant relationship with any of "*Isothecium* s.l."-clade, which was the main objective of their inclusion in the present analysis.

The terminal, "Isothecium s.l."-clade will be in the main focus of further discussion. First of all, the temptation to accept Isothecium s.l. so to include all the species of "Isothecium s.l."-clade seems not appropriate, as two out of its three subclades have much better support than when joined as a clade. Second, the genera Bryolawtonia and Tripterocladium have little in common in morphology with either Isothecium alopecuroides, the type of the genus, or with the plants of *I. myosuroides* group. It is worthy mentioning, that the large part in the third subclade, around *I. myosuroides*, also has high support in both trees.

Such phylogenetic reconstruction commonly leads to splitting genera into more natural entities, as it was suggested for *Eurhynchium* (Ignatov & Huttunen, 2002), *Neckera* (Olsson *et al.*, 2009), *Hypnum* (Kučera *et al.*, 2019).

The major splitting for the genus Isothecium was suggested already by Grout (1929). Grout found that taxa of the I. myosuroides complex in North America have too little in common with European I. alopecuroides, as the latter species has perfectly erect and symmetric capsules, stronger reduced peristome with poor striolation on dorsal surface of the exostome, low basal membrane, narrow segments and lack of cilia, contrary to Pseudisothecium Grout, in which capsules are slightly inclined to inclined, slightly asymmetric to asymmetric, and the peristome is perfect, with well-developed striolation; endostome has high basal membrane, more broad segments, one or two cilia that can be short to well-developed. In addition, leaves are coarsely serrate all around in species of I. myosuroides affinity vs. subentire in I. alopecuroides. There is also a fairly contrasting difference in proximal branch leaves in branch primordia between I. alopecuroides and I. myosuroides, as in the latter species they are compound, divided into narrow lobes; however, this character is not consistent throughout the I. myosuroides lineage. In I. cristatum, the most basal species in the grade to "core I. myosuroides", proximal branch leaves are entire. The suggestion of Grout on Pseudisothecium did not meet wide acceptance; only Podpera (1954) accepted this genus in Europe. The distinctions between Isothecium and Pseudisothecium are not hundred-percent stable: e.g., I. algarvicum, sister to I. alopecuroides, possesses endostome ciliae (Hedenäs, 1992), while I. cristatum has julaceous habit and less serrate leaves, habitually resembling *I. alopecuroides* rather than *I.* mvosuroides.

However, the tree topologies and the nested position of *Bryolawtonia* and *Tripterocladium* within the Lembophyllaceae provide an evidence for the necessity of the *Pseudisothecium* segregation. *Bryolawtonia* is least similar to other Lembophyllaceae due to subcomplanate foliage, so it was occasionally considered within the Neckeraceae (Norris, 2014). An evidence from morphology for its placement in the Lembophyllaceae is the bilobed proximal branch leaves (Fig. 5I–L).

Tripterocladium is a moss without a strong single costa, so it was historically placed in various families, *e.g.*, in the Sematophyllaceae. This is a small plant, contrary to most other Lembophyllaceae (although some *Rigodium* species and *I. algarvicum* comprise other examples of Lembophyllaceae with small plant size).

The East Asian species are habitually similar to North American and European plants; the general difference of East Asian taxa includes the persistent annulus in all species referred to *Dolichomitriopsis* and *Isothecium (I. hakkodense* and *I. subdiversiforme)*. Proximal branch leaves do not show anything distinct, except the case of *I. subdiversiforme*, where proximal branch leaves at early stage are oblate, widely rounded and clearly bilobed, while more developed proximal branch leaves are distally truncate, evenly denticulate along margin. Sporophyte of *I. subdiversiforme* is "maximally Hypnoid": capsules are strongly curved, exostome teeth are striolate below on the dorsal side, and endostome has perforated segments and developed cilia.

Isothecium hakkodense is variable and sometimes it is difficult to distinguish it from some phenotypes of *Dolichomitriopsis*; however, its moderately developed peristome, exostome teeth striolate below and endostome having ciliae, in addition to separate position in phylogenetic analysis, also suggests segregating it into a separate genus, rather than placing it in either *Isothecium*, *Pseudisothecium*, *Dolichomitriopsis*, or in the genus segregated for *I. subdiversiforme* (cf. Table 1).

TAXONOMY

The formal recognition of lineages discussed above are as follow:

1. Dolichomitriadelphus Ignatova, Fedosov & Ignatov, gen nov.

Type: **Dolichomitriadelphus hakkodensis** (Besch.) Ignatova, Fedosov & Ignatov, comb. nov.

Basyonum: *Isothecium hakkodense* Besch., Ann. Sci. Nat., Bot., sér. 7, 17: 371. 1893. Type: Nippon Nord, montagne d'Hakkoda, 5 juillet 1893, Faurie 826 (holotype in PC, high-resolution scan: https://science.mnhn.fr/ taxon/species/isothecium/hakkodense; isotype in H-BR!).

Etymology. The name means related to *Dolichomitra*, an East Asian genus of the Lembophyllaceae.

Diagnosis. Differs from *Dolichomitra*, *Dolichomitriopsis* and *Isothecium* in combination of (1) leaves ovate, with obtuse apices and serrulate margins vs. various in shape, mostly acuminate or, if with obtuse apices, then leaves are oblong-ovate and margins indistinctly crenulate; (2) costa thin, extending to 1/3–1/2 the leaf length vs. stout, extending above midleaf; (3) alar group weakly delimited, small vs. well-delimited, medium sized; (4) capsules slightly inclined, slightly asymmetric vs. erect, symmetric.

Species included: monospecific genus.

Dolichomitriadelphus hakkodensis (Besch.) Ignatova, Fedosov & Ignatov. — *Isothecium hakkodense* Besch., Ann. Sci. Nat., Bot., sér. 7, 17: 371. 1893.

Plants robust, yellowish-green, glossy. Secondary stems erect to ascending, to 5 cm long, dendroid, irregularly branched; stipe short; attenuate flagelliform branches absent. Secondary stem leaves imbricate when dry and wet, $1.3-1.5\times0.7-0.9$ mm, ovate, widest at 1/6-1/3 the leaf length, obtuse or bluntly acute, concave; costa single or forked, thin, extending to 1/2-3/4 the leaf length; margins serrulate in upper 1/2, entire below; upper laminal cells $15-20\times6-7$ µm, moderately thick-walled, slightly

	<u>Dolichomitriopsis</u>	Dolichomitriadelphus	sotheciastrum	Pseudisothecium	<u>Isothecium</u>	<u>Tripterocladium</u>	<u>Bryolawtonia</u>
Plant size	medium to large	medium to large	nedium	medium to large	small to large	small	medium
Branching	irregular	irregular	rregular to pinnate	irregular to pinnate	irregular	pinnate	pinnate
Foliage	julaceous or not	julaceous	not julaceous	julaceous or not	julaceous or not	not julaceous	subcomplanate
Foliage density	loose to dense	loose to dense	oose	loose, rarely dense	dense, rarely loose	loose to dense	loose
Leaf shape	ovate	ovate	ovate-lanceolate	ovate to triangular	ovate to obovate	ovate-lanceolate	ovate
Leaf concavity	rather strong	rather strong	noderately strong	strong to weak	rather strong	weak	weak
Leaf apex	acuminate	acute	narrow acute	acute to acuminate	short acuminate	narrow acute	acute
Leaf margin serration	weak	weak	strong	strong	weak	weak	strong
Alar group	moderate	poor	noderate	moderate to conspicuous	moderate	moderate	moderate
Costa	long	long 1	ong	long	long	short	long
Cells	elongate	elongate	elongate	elongate or short	elongate	elongate	short
Cell walls	thick and porose	thin t	hick	thick	thick	thick	thick
Capsule	erect	slightly inclined	strongly inclined	sl-str inclined	erect or inclined	inclined	
Annulus	persistent	persistent	bersistent	deciduous	deciduous	deciduous	deciduous
Exostome teeth below	papillose	striolate	striolate	striolate	striolate	striolate	striolate
Cilia	0	1-2	-2	1-3	0-1	1-2	1-2
Calyptra	smooth	smooth	vith few hairs	smooth	smooth	ż	smooth

Table 1. Comparison of genera of the Isothecium s.l.-clade

Fig. 2. *Dolichomitriadelphus hakkodensis* (from: Russia, Kuril Islands, Kunashir, *Ignatov 06-1284*, MHA): 1, 4 – habit, dry; 2-3 – branch leaves; 5 – upper laminal cells; 6 – mid-leaf cells; 7-9 – stem leaves; 10 – basal laminal cells. Scale bars: 1 cm for 4; 2 mm for 1; 1 mm for 2-3, 7-9; 100 µm for 5-6, 10.

flexuose, eporose; median laminal cells linear, $40-60\times5-7$ µm, with moderately thickened walls, porose; basal laminal cells elongate rectangular, $30-40\times6-7$ µm, with moderately thickened walls, porose; alar group small, weakly delimited, consisting of rectangular cells. Branch leaves similar to secondary stem leaves but smaller. Dioicous. Gametangia and sporophytes not seen in specimens from Russia. [Setae 0.8–1.2 cm, curved or flexu-

ose. Capsules inclined, oblong, symmetric or slightly asymmetric. Exostome teeth ca. 600 μ m long, striolate below, papillose distally; basal membrane low, segments narrowly perforated, cilia 1–2, short. Spores 12–15 μ m.]

Distribution and ecology. This species occurs in Japan (Hokkaido, Honshu) and in South Kuril Islands in the Russian Far East. In Russia it grows at altitudes 200-500 m, on rocks and cliffs along streams.

Specimens examined: Russia, Sakhalinskaya Province, Kunashir Island, Ruruj Mt., NW-faced slope, Dal'nij Creek, 44°28'N, 46°06', 250 m alt., Ignatov 06-1284 (MHA9038396); same place, 500 m alt., Ignatov 06-1188 (MHA9038398).

Differentiation. The distinction from *Dolichomitriopsis crenulata* is discussed under this species. Other species of *Dolichomitriopsis* from the Russian Far East have leaves with attenuate apices, while leaf apex in *D. hakkodense* is obtuse, rounded or, rarely, bluntly acute. *D. hakkodense* was also confused with *Dolichomitra cymbifolia* due to imbricate foliage and strongly concave leaves with rounded-obtuse apices; however, they can be recognized by ovate vs. wide elliptical leaves and upper leaf margins serrulate vs. irregularly dentate.

Isotheciastrum Ignatova, Fedosov & Ignatov, gen. nov.

Type: Isotheciastrum subdiversiforme (Broth.) Ignatova, Fedosov & Ignatov

Basionym: *Isothecium subdiversiforme* Broth., Hedwigia, 38: 237. 1899. Holotype: Nippon Nord, montagne d'Hakkoda, 5 juillet 1893, Faurie 826 (in H-BR!).

Etymology. The name means related to *Isothecium*, widespread genus of the Lembophyllaceae.

Diagnosis. Differs from *Dolichomitra, Dolichomitri*opsis and *Isothecium* in combination of (1) erect-spreading vs. mostly imbricate leaves; (2) leaf margins strongly dentate vs. serrulate, crenulate to subentire or, if dentate, leaf apices rounded; (3) capsules inclined, clearly asymmetric vs. erect or slightly inclined, symmetric or slightly asymmetric; calyptra occasionally with few hairs at base; endostome cilia 1–2, short vs. lacking, rudimentary or, rarely, well-developed. Broadly rounded to truncate proximal branch leaves (Fig. 3M–O) also differentiate it from other species of *Isothecium*-clade.

Species included: monospecific genus.

Isotheciastrum subdiversiforme (Broth.) Ignatova, Fedosov & Ignatov, comb. nova — *Isothecium subdiversiforme* Broth., Hedwigia 38: 237. 1899.

Plants slender, rigid, pale green, slightly glossy. Secondary stems erect to ascending, to 2-5 cm long, dendroid, irregularly to subpinnately branched; stipe short; attenuate flagelliform branches absent. Secondary stem leaves erect-spreading when dry and wet, 1.3-1.5×0.6-0.7 mm, ovate-lanceolate, widest at mid-leaf, acuminate, moderately concave; costa single, stout, gradually narrowing, occasionally forked, extending to 2/3-3/4 the leaf length; margins sharply serrate in upper 1/3-1/2, serrulate almost to the base; upper laminal cells $20-30\times8-10$ µm, slightly flexuose, thick-walled, eporose; median laminal cells sublinear, 25-45×7-8 µm, not flexuose, thickwalled, weakly porose; basal laminal cells long rectangular, $30-50\times7-8$ µm, thick-walled, weakly porose; alar group small to medium sized, well delimited, consisting of isodiametric, irregular in shape, thick-walled, dark colored cells. Branch leaves similar to secondary stem leaves but smaller. Dioicous. Setae 1.0-1.5 cm, flexuose. Capsules inclined, asymmetric, narrowly oblong-cylindric, brown. Exostome teeth 500-600 µm long, striolate below, papillose above; endostome basal membrane low, segments perforated, cilia 1–2, short. Spores 12–17 µm. Calyptra occasionally with few hairs at base.

Distribution and ecology. This species is widespread in Japan and is also known from Taiwan and southern provinces of China. It is not found in Russia yet; we consider it as a provisionary species which can be found in South Kuril Islands. Grows on humus or rocks, rarely on tree bases.

Specimens examined: Japan, Kyushu: Kagoshima Prefecture, Ohnami Lake in Kirishima Range, 31°56'N, 131°22'E, Ignatov & Ignatova 98-619 (MW9046234); Miyazaki Prefecture, Inohae Valley north of Nichinan, 31°40'N, 130°51'E, *Ignatov & Ignatova 98-589* (MW9046235); same place, *Ignatov & Ignatova 98-580* (MW9046237); Miyazaki, Minaminaka, Kitago, IV.1946 Noguchi & Hattori, Musci Japonici Ser. 1 (1947), #6 (MW9046236).

Differentiation. *Isotheciastrum subdiversiforme* can be easily recognized due to a unique combination of morphological characters, i.e, erect-spreading leaves with acuminate apices and strongly dentate upper margins, and asymmetric, inclined capsules.

Dolichomitriopsis S. Okamura, Bot. Mag. (Tokyo) 25: 66. 1911.

Type: Dolichomitriopsis crenulata S. Okamura

The genus is characterized by ovate-lanceolate or oblong-ovate leaves, mainly acuminate, except for the type species of the genus which has leaves with widely obtuse apices. Other diagnostic characters of the genus include (1) erect, symmetric capsules; (2) calyptra extending to the middle of capsule; (3) annulus persistent (consisting of small cells); (4) exostome teeth evenly and densely papillose; (5) endostome basal membrane low, segments not perforated, cilia lacking.

Dolichomitriopsis crenulata S. Okamura, Bot. Mag. (Tokyo) 25: 66. 3. 1911.

Plants medium-sized, yellowish-green, slightly glossy, forming loose tufts. Secondary stems ascending, to 5 cm long, irregularly branched, stipe indistinct; branches occasionally flagelliform-attenuate. Secondary stem leaves imbricate when dry and wet, 1.6-1.8(-2.0)×0.8-1.0 mm, oblong-ovate or obovate, widest at 1/3-2/3 the leaf length, widely obtuse, strongly concave; costa single, stout, gradually narrowing, occasionally forked, extending to 2/3-4/5 the leaf length; margins widely incurved, crenulate or almost entire in upper 1/2, slightly uneven below; upper laminal cells vermiform, 20-30×8-10 µm, thick-walled, eporose; median laminal cells sublinear, flexuose, forming oblique rows, $35-50\times6-7 \,\mu\text{m}$, with moderately thickened walls, eporose; basal laminal cells sublinear, 40- $55 \times 8 - 9 \,\mu$ m, thick-walled, eporose or indistinctly porose; alar group small to medium-sized, well-delimited, consisting of isodiametric, irregular in shape, thick-walled, dark colored cells. Branch leaves similar to secondary stem leaves but smaller.

Dioicous. Gametangia and sporophytes unknown in Russia. [Perichaetia on secondary stems. Setae flexuose when dry, 5–7 mm long. Capsules erect, symmetric, oblong-cylindric, smooth, brown. Annulus consisting of small cells. Exostome teeth ca. 300 μ m long, papillose throughout; endostome basal membrane low. Spores 10–13 μ m].

Distribution and ecology. This species was considered as an endemic of Japan (Hokkaido, Honshu). It is newly reported from Russia, South Kuril Islands, Iturup Island. It was collected in dwarf-shrub & herb dominated tundra in place with late snow melting, in crevices between boulders.

Fig. 2. *Dolichomitriopsis crenulata* (from: Russia, Kuril Islands, Iturup, *Bakalin K-16-45-07*, MHA9038397): 1-2 – habit, dry; 3 – upper laminal cells; 4-5 – leaves; 6-7 – mid-leaf cells; 8 – basal laminal cells. Scale bars: 1 cm for 2; 2 mm for 1; 1 mm for 4-5; 100 µm for 3, 6-8.

Specimen examined: Russia, Sakhalinskaya Province, Iturup Island, Bigatyr Range NW-faced macroslope, *Bakalin K-*16-45-07 (MHA9038397).

Differentiation. In leaf shape (oblong-ovate, widely obtuse, strongly concave) and imbricate foliage *D. crenulata* is similar to *Dolichomitra cymbifolia*; however, leaf margins are indistinctly crenulate in *D. crenulata* vs. strongly and irregularly dentate in the latter species. *D. crenulata* was also confused with *Dolichomitriadelphus hakkodense;* the differences between these two species include strongly vs. moderately concave leaves; oblong-ovate or obovate vs. ovate leaf shape; widely vs. narrow-ly obtuse leaf apices; and indistinctly crenulate vs. serrulate upper leaf margins.

Dolichomitriopsis cherdantsevae Ignatov & Ignatova, sp. nov.

Type: Russia, Primorsky Territory, Livadijskaya (Pidan) Mt., left tributary of Pryamoj Klyuch, 43°06'N, 132°41'E, alt. 450 m, on rocks in forest, 28.VIII. 2007, Ignatov 07-160. Holotype MW9037078, isotypes MHA9109603, LE.

Diagnosis. Differs from *Dolichomitriopsis diversiformis* in loose vs. dense tufts; secondary stems longer, to 10 cm vs. 3–4 cm long, subpinnate vs. dendroid branching; secondary stem and branch leaves erect-spreading vs. imbricate when dry; secondary stem and branch leaves not variable in shape, widest at 1/4–1/2 the leaf length

Fig. 2. *Dolichomitriopsis cherdantsevae* (from: Russia, Primorsky Territory, Pidan Mt., *Ignatov & Ignatova 06-2397*, MW9037075): 1-3 – habit, dry; 3-4 – mid-leaf cells; 5 – upper laminal cells; 6-7 – branch leaves; 8 – basal laminal cells; 9-11 – stem leaves. Scale bars: 1 cm for 1; 2 mm for 2; 1 mm for 6-7, 9-11; 100 μm for 3-5, 8.

vs. variable in shape, widest at 1/3-2/3 the leaf length; and attenuate flagelliform branches present vs. absent.

Etymology. The species name is given in honor of Valentina Yakovlevna Cherdantseva (1939–2013), Russian bryologist who worked in Vladivostok and made a great impact into the knowledge of the moss flora of Primorsky Territory.

Plants slender, pale-green, slightly glossy, forming loose tufts. Secondary stems erect to ascending, to 10 cm long, irregularly to subpinnately branched; stipe short or absent; attenuate-flagelliform branches often present. Secondary stem leaves erect-spreading when dry and wet, $1.5-1.8\times0.5-0.6$ mm, ovate-lanceolate, acuminate, slightly concave in lower half; costa single, gradually narrow-

Fig. 2. *Dolichomitriopsis diversiformis* (from: Russia, Kuril Islands, Kunashir, *Ignatov 06-1847*, MHA): 1, 3 – habit, dry; 2 – capsule; 4-5 – upper laminal cells; 6, 12-13 – branch leaves; 7-8 – mid-leaf cells; 9 – basal laminal cells; 10-11 – stem leaves. Scale bars: 1 cm for 1; 2 mm for 2-3; 1 mm for 6, 10-13, 7-9; 100 µm for 4-5, 7-9.

ing, occasionally forked, extending to 1/2-3/4 the leaf length; margins plane, serrulate in upper 1/2, weakly serrulate almost to the base; upper and median laminal cells linear, $40-80\times7-8$ µm, thick-walled, eporose or weakly porose; basal laminal cells long rectangular, 40- $70\times7-9$ µm, thick-walled, weakly porose; alar group well delimited, consisting of isodiametric, irregular in shape, thick-walled, dark colored cells. Branch leaves similar to secondary stem leaves but smaller.

Dioicous. Perichaetia numerous on secondary stems. Perichaetial leaves from oblong sheathing base narrowed into long triangular acumen, acumina spreading. Male plants and sporophytes not seen.

Distribution and ecology. This species is endemic for the Russian Far East. It was collected several times at one locality, on slope of Pidan (Livadijskaya) Mt., at 450– 900 m alt., in mixed conifer & broadleaved forest, on rocks covered with mosses.

Other specimen examined: Russia, Primorsky Territory, Pidan (Livadijskaya) Mt., 43°05'N, 132°41', 900 m alt., *Ignatov & Ignatova 06-2107* (MHA9109604 & MW9037077); same place, 43°06'N, 132°41'E, alt. 400-500 m, *Ignatov & Ignatova 06-2397* (MW9037075).

Dolichomitriopsis diversiformis (Mitt.) Nog., J. Jap. Bot 22: 83. 1948.

Plants medium-sized, pale-green or yellowish-green, slightly glossy, forming dense tufts. Secondary stems erect, 3.5-4 cm long, dendroid, stipe short; stoloniform branches absent. Secondary stem leaves imbricate when dry and wet, 1.2-1.3(-1.7)×0.6-0.7(-0.9) mm, ovate, oblong or obovate, widest at 1/3-2/3 the leaf length, acuminate, concave; costa single, stout, gradually narrowing, occasionally forked, extending to 1/2-5/6 the leaf length; margins plane, serrulate in upper 1/2, entire below; upper laminal cells rhomboidal to oblong-elliptical, 12-20×8-10 µm, thick-walled, eporose; median laminal cells sublinear, slightly flexuose, $20-40\times5-6$ µm, thick-walled, eporose; basal laminal cells long rectangular, 25-45×6-7 µm, thickwalled, eporose; alar group small to medium-sized, welldelimited, consisting of isodiametric, irregular in shape, thick-walled, dark colored cells. Branch leaves similar to secondary stem leaves but smaller.

Dioicous. Perichaetia numerous on secondary stems and branches. Perichaetial leaves from oblong sheathing base narrowed into long triangular acumen, acumina spreading. Setae straight, 7–10 mm long. Capsules erect, symmetric, oblong-cylindric, smooth, reddish-brown. Annulus consisting of small cells. Exostome teeth 250 (–300) μ m long, papillose throughout; endostome basal membrane low; segments narrow, not perforated; cilia absent. Spores 14–18 μ m.

Distribution and ecology. In the Russian Far East *D. diversiformis* is known from the South Kuril Islands and Primorsky Territory; it grows at altitudes from sea level to 695 m, in broadleaved, conifer and mixed forests, and occasionally on meadows. It was collected from

tree bases (of *Sorbus, Alnus, Betula, Quercus*, and *Abies*), as well as on rocks and rock outcrops.

Specimens examined: Russia: Sakhalinskaya Province, Island Kunashir: 5-6 km east of Golovnino, 43°45'N, 145°34'E, 18.VII.1990 Nedoluzhko s.n. (MHA9109601); cape Mysovyj, 44°17'N, 146°17'E, 40 m alt., Ignatov 06-1847 (MW9037073); vicinities of Tretjakovo Settlement, 43°58'N, 145°39'E, 123 m alt., Koroteeva 15-10/7-7 & 15-10/4-3 (MHA9049327 & MHA9049325); Bay Aerodromnaya, on hill top, 43°48'N, 146°45'E, 11.IX.2006 Nyushko Sh-28-06f (MHA 9109597); Ruruy Mt., 44°28'N, 146°06'E, 450m alt., Ignatov 06-1125 (MHA9109600); Island Shikotan: area of Malokurilsk Village, 43°52'N, 146°51'E, 100 m alt., Bakalin K-37-3-07 (MHA9109598); Primorsky Territory: Vladivostok Area, near Lyanchikhe Settl., 26.IX.1950 Voroshilov s.n. (MHA9109605); Lazo Distr., Elomovsky Creek, 43°14'N, 133°43'E, 695 m alt., Ignatov & Ignatova 13-1742 (MHA9109599).

Differentiation. Differences between *D. diversiformis* and *D. cherdantsevae* are given in the diagnosis of the latter species. *Isotheciastrum subdiversiforme* has leaves of similar shape; however, in that species leaves are erect-spreading vs. imbricate in *D. diversiformis*, with sharply serrate vs. serrulate margins; furthermore, if sporophytes are present, these species are easily recognized due to asymmetric, inclined vs. symmetric, erect capsules.

Dolichomitra Broth., Nat. Pflanzenfam. 1(3): 867. 1907.

The genus is characterized by combination of robust plants; imbricate foliage; widely ovate, strongly concave leaves with rounded apices and irregularly dentate upper margins; erect, symmetric capsules; deciduous annulus; exostome teeth smooth below, densely papillose in upper 2/3; endostome basal membrane moderately low, segments not perforated, cilia lacking.

The genus includes single species.

Dolichomitra cymbifolia (Lindb.) Broth., Nat. Pflanzenfam. I(3): 868. 636. 1907.

Plants robust, pale-green or yellowish-green, forming loose tufts. Secondary stems erect, to 8 cm long, curved above, irregularly branched, stipe distinct; flagelliform-attenuate branches occasionally present. Secondary stem leaves imbricate when dry and wet, 1.6-2.0×1.6-1.3 mm, broadly oblong, oblong-elliptical or almost round, widest at mid-leaf, widely obtuse, strongly concave; costa single, stout, gradually narrowing, often forked, extending to 2/3-3/4 the leaf length; margins widely incurved, irregularly dentate at rounded apical part, serrate at upper 1/3, entire below; upper laminal cells vermiform, 20-25×8-10 µm, with unevenly thickened walls, with pores near cell ends; median laminal cells sublinear, not flexuose, 35-45×6-7 µm, thickwalled, strongly porose; basal laminal cells sublinear, 40-50×8-9 µm, thick-walled, strongly porose; alar group indistinct or weakly differentiated, small. Branch leaves similar to secondary stem leaves.

Dioicous. Archegonia on secondary stems. Male plants and sporophytes unknown in Russia. [Setae flex-

5

Fig. 2. *Dolichomitra cymbifolia* (from: Russia, Kuril Islands, Shikotan, *Bakalin K-42-4-07*, MW9046187): 1-2, 6 – habit, dry; 3, 7 – branch leaves; 4 – upper laminal cells; 5 – mid-leaf cells; 8 – basal laminal cells. Scale bars: 1 cm for 1; 2 mm for 2, 6; 1 mm for 3, 7; 100 µm for 4, 5, 8.

uose when dry, 2.0–2.5 cm long. Capsules erect, symmetric, oblong-cylindric, smooth, brown. Annulus deciduous. Exostome teeth ca. 500 μ m long, smooth below, papillose in upper 2/3; endostome basal membrane low, segments keeled, not perforated, cilia lacking. Spores 10–15 μ m].

Distribution and ecology. *Dolichomitra cymbifolia* is known from Japan, Korea, China, and Taiwan; it is newly reported from South Kuril Islands in Russia. Grows in forests, on rocks covered with humus layer; in Shikotan Island it was collected at 250 m a.s.l., in grass community intermingled with *Juniper* thickets, on a ledge of wet cliff. Specimens examined: Russia, South Kuril Islands, Shikotan Island, Notoro Mt., 43°47'N, 146°44'E, 250 m alt., *Bakalin K-45-29-07* (MHA, MW9046191).

Differentiation. *Dolichomitra cymbifolia* can be recognized by robust plants; imbricate foliage; oblong-elliptical to almost round, strongly concave leaves with widely incurved margins; widely obtuse apices; leaf margins irregularly serrate only at apex and serrulate in upper 1/2; and almost indistinct alar groups; strongly porose median and basal cells are also unique for *Dolichomitra* among the Lembophyllaceae in the Russian Far East. Differences from *Dolichomitriadelphus hakkodensis* are discussed under that species.

KEY FOR IDENTIFICATION OF LEMBOPHYLLACEAE IN THE RUSSIAN FAR EAST AND NEIGHBORING TERRITORIES

- 2. Leaves wide elliptical or round, irregularly dentate at apex; laminal cells strongly porose Dolichomitra cymbifolia
- Leaves ovate or oblong-ovate, serrulate or crenulate to almost entire at apex; laminal cells eporose or weakly porose
 3
- 3. Leaves oblong-ovate, cymbiform, crenulate to almost entire at apex *Dolichomitriopsis crenulata*
- Leaves ovate, cochleariform, serrulate at apex
 Dolichomitriadelphus hakkodensis

Pseudisothecium Grout Moss Fl. N. Amer. 3: 12. 1928. Type: *Pseudisothecium myosuroides* (Brid.) Grout

Plants medium-sized to robust. Secondary stems dendroid to pinnately branched, branches often arching downward, in some species attenuate-flagelliform. Leaves ovate to ovate-lanceolate or ovate-triangular, acute or acuminate; margins serrate to coarsely so, rarer serrulate; laminal cells short-elongate to elongate, thickwalled, alar cells numerous. Capsules suberect to inclined, more or less symmetric to distinctly curved; operculum rostrate; annulus deciduous; exostome teeth striolate below, papillose above; basal membrane high, segments narrow, perforated, ciliae 1–3, usually long.

Other species included:

Pseudisothecium cardotii (Kindb.) Ignatova, Fedosov & Ignatov, comb. nov. — *Isothecium cardotii* Kindb., Cat. Canad. Pl., Musci 275–276. 1892.

Pseudisothecium cristatum (Hampe) Ignatova, Fedosov & Ignatov, comb. nov. — *Leptohymenium cristatum* Hampe, Linnaea 30(4): 459–460. 1860. — *Isothecium cristatum* (Hampe) H. Rob., Bryologist 65(2): 95. 1962 [1963].

Pseudisothecium holtii (Kindb.) Ignatova, Fedosov & Ignatov, comb. nov. — *Isothecium holtii* Kindb., Rev. Bryol. 22: 83. 1895.

Pseudisothecium interludens (Stirt.) Ignatova, Fedosov & Ignatov, comb. nov. — *Isothecium interludens* Stirt., Ann. Scott. Nat. Hist. 9(35): 178. 1900.

Pseudisothecium montanum (Draper et al.) Ignatova, Fedosov & Ignatov, comb. nov. — *Isothecium montanum* Draper, Hedenäs, M. Stech, Tina Lopes & Sim-Sim, Bot. J. Linn. Soc. 177(3): 431. 2015.

Pseudisothecium prolixum (Mitt.) Ignatova, Fedosov & Ignatov, comb. nov. — *Leskea prolixa* J. Proc. Linn. Soc., Bot. 8: 7. 1. 1864. — *Echinodium prolixum* (Mitt.) Broth., Nat. Pflanzenfam. I(3): 1217. 1909. — *Isothecium prolixum* (Mitt.) M. Stech, Sim-Sim, Tangney & D. Quandt, Organisms Diversity Evol. 8: 290. 2008.

Pseudisothecium stoloniferum (Brid.) Grout.

ACKNOWLEDGEMENTS

We cordially thank J. Shevock for improving English of the paper. The work on SEM was performed at User Facilities Center of M.V.Lomonosov Moscow State University under financial support of Ministry of Education and Science of Russian Federation. The molecular study was supported by RSF RSF18-14-00121.

LITERATURE CITED

- BROTHERUS, V.F. 1907. Bryales, in part. I(3). In: Engler, H.G.A. & K. Prantl (eds.) Die Natürlichen Pflanzenfamilien. Engelmann, Leipzig: 865–960.
- CHERDANTSEVA, V.YA.[†], O.YU. PISARENKO, M.S. IGNATOV, E.A. IGNATOVA, V.E. FEDOSOV, S.V. DUDOV & V.A. BAKALIN. 2018. Mosses of the southern Russian Far East, an annotated check-list. – *Botanica Pacifica* 7(2): 53–81. DOI https://doi.org/10.17581/ bp.2018.07206
- DRAPER, I., L HEDENÄS & G.W. GRIMM. 2007. Molecular and morphological incongruence in European species of *Isothecium* (Bryophyta) Molecular Phylogenetics and Evolution 43(3): 700-716. https://doi.org/10.1016/j.ympev.2006.09.021
- DRAPER, I., L. HEDENÄS, M. STECH, J. PATIÑO, O. WERNER, J.M. GONZALEZ-MANCEBO, M. SIM-SIM, T. LOPES & R.M. ROS. 2015. How many species of *Isothecium* (Lembophyllaceae, Bryophyta) are there in Macaronesia? A survey using integrative taxonomy. – *Botanical Journal of the Linnean Society* **117**(3): 418–438. HTTPS:/ /DOI.ORG/10.1111/BOJ.12250
- ENROTH, J., S. OLSSON, S. HUTTUNEN, V. BUCHBENDER, R., TANGNEY, M. STECH, L. HEDENÄS & D. QUANDT. 2019. Orthostichellaceae fam. nov. and other novelties in pleurocarpous mosses re-

vealed by phylogenetic analyses. - The Bryologist 122(2): 219-245.

- ENROTH, J., J. SHEVOCK & M. IGNATOV. 2018. *Mawenzhangia thamnobryoides* (Bryophyta, Lembophyllaceae), a new moss genus and species from the Shangri-la region of Yunnan Province, China. *Phytotaxa* **346**(3): 237–246. doi.org/10.11646/phytotaxa.346.3.3
- FREY, W. & M. STECH. 2009. Bryophyta (Musci, mosses). In: Frey, W. (ed.). Syllabus of plant families A. Engler's Syllabus der Pflanzenfamilien. Part 3. Bryophytes and seedless vascular plants. 13th ed., Gebr. Borntraeger Verlagsbuchhandlung, Stuttgart, Germany: 116–257.
- GARDINER, A., M. IGNATOV, S. HUTTUNEN & A. TROITSKY. 2005. On resurrection of the families Pseudoleskeaceae Schimp. and Pylaisiaceae Schimp. (Musci, Hypnales). – *Taxon* 54: 651–663.
- GOFFINET, B., W.R. BUCK & A.J. SHAW. 2009. Morphology, anatomy, and classification of the Bryophyta. – In: Goffinet, B. & A.J. Shaw (eds.). Bryophyte biology, 2nd edn. Cambridge: Cambridge University Press: 55–138.
- GROUT, A.J. 1929. Check list of the pleurocarpous mosses of North America North of Mexico, *32 pp*.
- HALL, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. – Nucleic Acids Symposium Series 41: 95–98.
- HEDENÄS, L. 1992. Flora of Madeiran pleurocarpous mosses (Isobryales, Hypnobryales, Hookeriales). – Bryophytorum Bibliotheca 44: 165 pp.
- HEDENÄS L. 2017. Scandinavian Oncophorus (Bryopsida, Oncophoraceae): species, cryptic species, and intraspecific variation. – European Journal of Taxonomy 315: 1–34.
- HODGETTS, N.G. & A. VANDERPOORTEN. 2018. Isothecium myosuroides var. brachythecioides (Dixon) Braithw. reinstated as a species, I. interludens Stirt. – Journal of Bryology 40(4), 316–323. DOI: 10.1080/03736687.2018.1514176
- HUTTUNEN, S., N. BELL, V.K. BOBROVA, V. BUCHBENDER, W.R. BUCK, C.J. COX, B. GOFFINET, L. HEDENÄS, B.-C. HO, M.S. IG-NATOV, M. KRUG, O.I. KUZNETSOVA, I.A. MILYUTINA, A.E. NEWTON, S. OLSSON, L. POKORNY MONTERO, J. SHAW, M. STECH, A.V. TROITSKY, A. VANDERPOORTEN & D. QUANDT. 2012. Disentangling knots of rapid evolution: origin and diversification of the moss order Hypnales. – *Journal of Bryology* 34(3): 187–211.
- IGNATOV, M.S. 1999. Bryophyte flora of the Huon Peninsula, Papua New Guinea. LXIII. On the pseudoparaphyllia in Brachytheciaceae and Meteoriaceae (Musci). *Acta Botanica Fennica* **165**: 73–83.
- IGNATOV, M.S., O.M. AFONINA, E.A. IGNATOVA et al. 2006. Checklist of mosses of East Europe and North Asia. – Arctoa 15: 1–130.
- IGNATOV, M.S., A.V. FEDOROVA & V.E. FEDOSOV. 2019. On the taxonomy of Anomodontaceae and *Heterocladium* (Bryophyta). *Arctoa* **28**(1): 75–102.
- IGNATOV, M.S. & S. HUTTUNEN. 2002. Brachytheciaceae (Bryophyta) – a family of sibling genera. – Arctoa 11: 245–296.
- KATOH, K. & D.N. STANDLEY. 2013. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. – *Molecular Biology and Evolution* 30(4): 772–780.
- KUČERA, J., O.I. KUZNETSOVA, A. MANUKJANOVÁ & M.S. IG-NATOV. 2019. A phylogenetic revision of the genus *Hypnum*: Towards completion. – *Taxon* DOI: 10.1002/tax.12095

- MILLER, M.A., W. PFEIFFER & T. SCHWARTZ. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. – In: Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov. 2010, New Orleans, LA: 1–8.
- MÜLLER, K. 2005. SeqState. Applied Bioinformatics 4 (1): 65-69.
- NOGUCHI, A. & Z. IWATSUKI. 1989. Illustrated Moss Flora of Japan, Vol. 3. – *Hattori Botanical Laboratory, Nichinan: 492–742.*
- NOGUCHI, A., Z. IWATSUKI & T. YAMAGUCHI. 1991. Ilustrated Moss Flora of Japan, Vol. 4. – *Hattori Botanical Laboratory, Nichinan: 743–* 1012.
- NORRIS, D.H. 2014. Bryolawtonia. In: Flora of North America North of Mexico. Vol. 28, Oxford University Press, New York: 611–613.
- OLSSON, S., V. BUCHBENDER, J. ENROTH, S. HUTTUNEN, L. HEDENÄS & D. QUANDT. 2009. Evolution of the Neckeraceae: resolving the backbone phylogeny. *Systematics and Biodiversity* 7: 419–432. https://doi.org/10.1017/S1477200009990132
- QUANDT, D., S. HUTTUNEN, R. TANGNEY & M. STECH. 2009. Back to the future? Molecules take us back to the 1925 Classification of the Lembophyllaceae (Bryopsida). – *Systematic Botany* 34(3): 443– 454.
- QUANDT, D., R.S. TANGNEY, J.-P. FRAHM & W. FREY. 2000. A molecular contribution for understanding the Lembophyllaceae (Bryopsida) Based on noncoding chloroplast regions (cpDNA) and ITS2 (nrDNA) sequence data. – *Journal of the Hattori Botanical Laboratory* 89: 71–92.
- RAMBAUT, A., & A.J. DRUMMOND. 2007. Tracer. Computer program and documentation distributed by the author, website http:// beast. bio. ed. ac. uk/Tracer
- RONQUIST, F., M. TESLENKO, P. VAN DER MARK, D.L. AYRES, A. DARLING, S. HÖHNA, B. LARGET, L. LIU, M.A. SUCHARD & J.P. HUELSENBECK. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. – Systematic Biology 61: 539–542.
- SIMMONS, M.P. & H. OCHOTERENA. 2000. Gaps as characters in sequence-based phylogenetic analyses. – Systematic Biology 49(2): 369–381.
- SPIRINA, U.N. & M.S. IGNATOV. 2015. Bilobed leaves in mosses? Structure and adaptive significance of proximal branch leaves in Lembophyllaceae. – Arctoa 24(1): 124–140.
- STAMATAKIS, A. 2014. RAxML Version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. – *Bioinformatics* 10.1093/ bioinformatics/btu033
- TANGNEY, R.S. 1997. A generic revision of the Lembophyllaceae. Journal of the Hattori Botanical Laboratory 81: 123–153.
- TROITSKY, A.V., M.S. IGNATOV, V.K. BOBROVA & I.A. MILYUTI-NA. 2008. Contribution of genosystematics to current concepts of phylogeny and classification of Bryophytes. – *Biochemistry (Moscow)* 72(12): 1368-1376.
- VANDERPOORTEN, A., L. HEDENÄS, C.J. COX & A.J. SHAW. 2002. Phylogeny and morphological evolution of the Amblystegiaceae (Bryopsida). – Molecular Phylogenetics and Evolution 23 (1): 1–21.
- WANG, J.-J. & Y. JIA. 2019. Reappraisal of *Taxiphyllum arcuatum* (Bosch & Sande Lac.) S. He based on molecular and morphological data. – *The Bryologist* 122(4): 559–567.

Appendix 1. Specimens and accession number used in concatenated analysis.

Species	isolate and specimen for new sequences	ITS	trnG t	rnSF(*-trnLF)
Bryolawtonia vancouveriensis	B222	FM161082	_	AM990349
Camptochaete arbuscula	s.n.	AF403629	_	_
Camptochaete arbuscula var. tumida	SH10	FM161087	_	AM990353
Camptochaete deflexa	s.n.	AF188057	_	_
Dolichomitra cymbifolia 1	s.n.	AF509855	_	_
Dolichomitra cymbifolia 2	Deguchi HIRO 79	LS999115	AY908344	LR130214 & AF509558

Species	isolate and specimen for new sequences	ITS	trnG t	rnSF(*-trnLF)
Dolichomitra cymbifolia 3 Dolichomitra cymbifolia 4	OK2125 Shikotan, <i>Bakalin K-45-29-07</i> , MHA OK2395 Shikotan, <i>Bakalin K-42-4-07</i> , MHA	MN854444 MN854442	MN841342 MN841341	– MN841361
Dolichomitriadelphus hakkodensis 1 Dolichomitriadelphus hakkodensis 2 Dolichomitrionsis cherdantsevae 1	OK427 Kunashir, Ignatov 06-1284, MHA OK2396 Kunashir, Ignatov 06-1125, MHA OK2371 Primorsky Ignatov & Ignatova	MN854443 MN854438	– MN841339	– MN841357
Donenominopsis cheruanisevae 1	06-2397, MW9037075	MN854430	MN841331	MN841349
Dolichomitriopsis cherdantsevae 2	OK2372 Primorsky, Ignatov 07-160, MW9037078	MN854431	MN841332	MN841350
Dolichomitriopsis crenulatus	OK2121 Iturup, Bakalin K-16-45-07, MHA9038397	MN854436	MN841337 MN841334	MN841355
Dolichomitriopsis diversiformis 1 Dolichomitriopsis diversiformis 2	S.n.	FM161098	-	-
Dolichomitriopsis diversiformis 3	5	111101090		
(as D. subdiverisormis)	T11	DQ294917	DQ294781	_
Dolichomitriopsis diversiformis 4	OK2370 Primorsky, Ignatov & Ignatova 13-1742, MW9037072	MN854432	MN841333	MN841351
Dolichomitriopsis diversiformis 5	OK2123 Primorsky, Ignatov & Ignatova 13-1742, MW9037072	MN854434	MN841335	MN841353
Dolichomitriopsis diversiformis 6	OK2394 Kunashir. Koroteeva 15-10/4-3. MHA	MN854435	MN841336	MN841354
Fallaciella gracilis	s.n.	AF188058	_	_
Fifea aciphylla	s.n.	AF295041	_	_
Heterocladium heteropterum 1	B350	FM161116	_	AM990377
Heterocladium heteropterum 2	OK2224	MN030527	_	MN045120
Heterocladium heteropterum 3	OK2223	MN030526	_	MN045119
Heterocladium wulfsbergi	AnomF19	MN030542	_	MN045121
Homalia trichomanoides 1	B218	FM161126	_	AM990385
Homalia trichomanoides 2	OK2219 OK2260 Japan Janaton & Janatona 07 580 MHA	MIN030524	- MN9/1229	- MN941256
Isotheciastrum subdiversijorme 1 Isotheciastrum subdiversiforme 2	T57	DO294918	DO294827	MIN841550
Isothecium algarvicum 1	T52	DQ294867	DQ294827	_
Isothecium algarvicum 2	T53	DQ294868	DQ294823	_
Isothecium algarvicum 3	IP1	HQ380897	HQ380953	HQ381007*
Isothecium algarvicum 4	IP2	HQ380898	HQ380954	HQ381008*
Isothecium algarvicum 5	GO1	HQ380904	HQ380959	HQ381014*
Isothecium algarvicum 6	PA1	HQ380906	HQ380961	HQ381016*
Isothecium algarvicum /	PA3	HQ380908	HQ380963	HQ38101/*
Isothecium algarvicum 8	MD4 T23	HQ380914	- DO204703	_
Isothecium alopecuroides 2	T91	DQ294879	DQ294793	_
Isothecium alopecuroides 2 Isothecium alopecuroides 3	T31	DQ294915	DQ294801	_
Isothecium alopecuroides 4	AZ	HQ380916	HQ380971	HQ381034*
Isothecium alopecuroides 5	T25	DQ294881	DQ294795	_
Isothecium alopecuroides 6	T46	DQ294895	DQ294816	_
Isothecium alopecuroides 7	T38	DQ294903	DQ294808	_
Isothecium alopecuroides 8	139	DQ294907	DQ294809	_
Isothecium alopecuroides 9	1/4 T70	DQ294909	DQ294840	_
Isothecium alopecuroides 11	T81	DQ294910	—	—
Isothecium alopecuroides 12	OK2466 Ingushetia. <i>Ignatov et al.</i> 2018. MW 9090725	MN854426	MN841327	MN841345
Isothecium alopecuroides 12	T12	DQ294916	DO294782	_
Lembophyllum clandestinum 1	SH103	FM161145	_	AM990401
Lembophyllum clandestinum 2	s.n.	AF403630		
Lembophyllum divulsum 1	B295	FM161146	_	FM1611461
Lembophyllum divulsum 2	s.n.	AY009807	_	_
Looseria orbiculata 1	s.n.	AJ862691	_	_
Looseria orbiculata 2	s.n.	AF509860	_	_
Mawenzhangia thamnobryoides	sn	MG515239	_	_
Neckera menziesii	B161	FM161167	_	FM210305
Neckera pennata 1 Neckera pennata 2	NF48 NF50	MIN854440	_	MN841359 MN841360
Neobarbella comes	N150	Δ F 3 9 5 6 7 8	_	_
Nogonterium oracile 1	Buchbender 348	HE660012	_	HE717062*
Nogopterium gracile 2	Pt gr	HO268249	_	_
Nogopterium gracile 3	s.n.	KC249957	_	_
Nogopterium gracile 4	B408	LS999114	_	LR130213
Pseudanomodon attenuatus 1	OK2209	MN030519	-	MN045086
Pseudanomodon attenuatus 2	OK2169	MN030517	_	_

Species	isolate and specimen for new sequences	ITS	trnG ti	rnSF(*-trnLF)
Pseudanomodon giraldii	Jiangxi3	KF770680	_	KF770518
Pseudisothecium cardotii 1	OK2472 California, Shevock 51319, MW9112752	MN854439	MN841340	MN841358
Pseudisothecium cardotii 2	CAN	HQ380917	HQ380972	HQ381038*
Pseudisothecium cristatum 1	USA	HQ380918	HQ380973	HQ381040*
Pseudisothecium cristatum 2	OK2469 California, Shevock 53668, MW9112676	MN854424	MN841325	MN841343
Pseudisothecium cristatum 3	OK2470 California, Shevock 48391, MW9075665	MN854425	MN841326	MN841344
Pseudisothecium cristatum 4	Т54	DQ294919	_	_
Pseudisothecium holtii	T65	DO294923	DO294834	_
Pseudisothecium interludens 1	T67	DO294926	DO294836	_
Pseudisothecium interludens 2	T72	DO294925	DO294838	_
Pseudisothecium interludens 3	Hodgetts 6780	MH465612	_	_
Pseudisothecium interludens 4	Hodgetts 9099	MH465613	_	_
Pseudisothecium interludens 5	T66	DO294921	DO294835	_
Pseudisothecium interludens 6	GBR2	HO380928	HO380982	HO381055*
Pseudisothecium interludens 7	Hodgetts 9099	MH465613	_	_
Pseudisothecium myosuroides 1	T60	DO294927	DO294830	_
Pseudisothecium myösuröides ?	T59	DO294924	DO294829	_
Pseudisothecium myosuroides 3	GO2	HO380921	HO380975	HO381044*
Pseudisothecium myosuroides 4	GO3	HO380922	HO380976	HO381045*
Pseudisothecium myosuroides 5	Kucera 15467	MK 327347	_	_
Pseudisothecium myosuroides 6	TE1	HO380923	HO380977	HO381046*
Pseudisothecium myösuröides 7	CANI	HQ380919		
Psoudisothecium myosuroides 8	A7	HQ380915	- HO380070	- HO381050*
Pseudisothecium myosuroides 0	MD	HQ380025	HQ380080	HQ381051*
Pseudisothecium myosuroides)	MD	ΔΥ737479	-	-
Pseudisothecium myösuröides 10	OK2468 Norway Janatov & Janatova	111/5/4/)		
1 seutisomeetum myöstilöittes 11	06-5024 MW 9046192	MN854427	MN841328	MN841346
Pseudisothecium myosuroides 12	T51	DO294922	DO294821	_
Pseudisothecium prolivum 1	MD1	HO380934	HO380989	HO381062*
Pseudisothecium prolixum ?	s n	KF648790		-
Psoudisothecium prolixum 2	5.11. Cafafa 242201	KI 048750		
Provident proline proline A	Calolo 242201 MD7	LI0280040	- UO380004	- UO201060*
Production proline 5		HQ360940	пQ360994	HQ301000
P seudisoinecium protixum 5	8.11.	KW1070238	_	_
Pseudisothecium prolixum 6	s.n.	KM6/6256	_	_
Pseudisothecium prolixum /	s.n.	EU4//598	_	_
Pseudisothecium prolixum 8	s.n.	KF648791	_	-
Pseudisothecium prolixum 9	s.n.	KM676261	-	-
Pseudisothecium prolixum 10	MD8	HQ380941	HQ380995	HQ381069*
Pseudisothecium prolixum 11	s.n.	KF64880	_	_
Pseudisothecium prolixum 12	s.n.	KM676257	_	_
Pseudisothecium stoloniferum 2	T56	DQ294920	DQ294826	-
Pseudisothecium stoloniferum 3	OK2471 California, Shevock 53640, MW9112640	MN854428	MN841329	MN841347
Pseudisothecium stoliniferum 1	OK2473 Oregon, 22 Aug 1989 Ignatov s.n., MW9046232	MN854429	MN841330	MN841348
Rigodium implexum 1	Ri29	FM161209	AM990436	-
Rigodium implexum 2	s.n.	AF543551	_	_
Rigodium pseudothuidium 2	B559	FM161210	-	AM990437
Rigodium pseudothuidium 1	s.n.	AF509842	_	_
Rigodium toxarion	s.n.	AF509843	_	_
Thamnobryum ellipticum	B546	FM161220	_	FM210325
Thamnobryum negrosense	B420	FM161225	_	FM210327
Touwia laticostata	B261	FM161233	_	FM882221 &
				FM210330
Tripterocladium leucocladulum 1	SH431	FM161235	_	AM990450
Tripterocladium leucocladulum 2	s.n.	AY188175	_	_
Weymouthia hillardieri	s n	AF188053	_	_
Weymouthia cochlearifolia 1	\$7	FM161236	AM990451	_
Weymouthia cochlaarifolia 2	s n	Δ 1862603	_	_
Weymouthia mollis 1	DO	FM161227	_	AM990452
Waymouthia mollia 2		LO280017	_	1111770432
Way and hig malling	5.II.	11020091/	_	_
weymoutnia motils 2	S.II.	AJ802094	-	-